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Embedding Experiential Design
Knowledge in Interactive
Knowledge Graphs
Knowledge collection, extraction, and organization are critical activities in all aspects of
the engineering design process. However, it remains challenging to surface and organize
design knowledge, which often contains implicit or tacit dimensions that are difficult to
capture in a scalable and accessible manner. Knowledge graphs (KGs) have been explored
to address this issue, but have been primarily semantic in nature in engineering design con-
texts, typically focusing on sharing explicit knowledge. Our work seeks to understand
knowledge organization during an experiential activity and how it can be transformed
into a scalable representation. To explore this, we examine 23 professional designers’
knowledge organization practices as they virtually engage with data collected during a
teardown of a consumer product. Using this data, we develop a searchable knowledge
graph as a mechanism for representing the experiential knowledge and afford its use in
complex queries. We demonstrate the knowledge graph with two extended examples to
reveal insights and patterns from design knowledge. These findings provide insight into pro-
fessional designers’ knowledge organization practices and represent a preliminary step
toward design knowledge bases that more accurately reflect designer behavior, ultimately
enabling more effective data-driven support tools for design. [DOI: 10.1115/1.4056800]
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1 Introduction
Design can be considered a learning process, in which knowledge

is collected, synthesized, and organized to achieve an outcome
[1–3]. Representations of knowledge, its organization, and transfor-
mation underpin foundational models of the engineering design
process, such as the function-behavior-structure (FBS) model and
C-K design theory [4,5], but the importance of knowledge in
design is not simply theoretical. By Robinson’s accounting, engi-
neers spend more than 55% of their work hours acquiring or
sharing knowledge [6], making knowledge organization, and struc-
turing a critical element of engineering design practice. This is
perhaps most evidenced from the importance of knowledge struc-
turing, organization, and sharing in organizations, where it is con-
sidered a critical strategic focus and a basis of competitive
advantage [7,8].
Numerous studies have examined how knowledge structuring

affects the outcomes of design activities such as idea generation
[9] and user feedback [10]. However, to effectively structure their
knowledge, engineers and designers must navigate a large space
of complex information [11,12], reconcile it with collaborators
[13], and manage it toward a singular design outcome [14].
Despite many advances in virtual collaboration, remote work exac-
erbates these challenges [15]. This work seeks to explore virtual
collaboration given the rise of remote work due to the effects of
the ongoing COVID-19 pandemic [16].

Efforts to codify and structure engineering knowledge through
knowledge graphs (KGs) have been very successful. KGs are net-
works of data containing nodes of information and edges, which
store the relationships connecting various nodes. TechNet2 is a
leading example of a successful engineering KG. However,
graphs like TechNet’s require well-structured semantic data [17–
19], which may be considered explicit knowledge, or knowledge
that is readily expressible and transferable [20]. Much of design
knowledge, however, results from design activities, such as proto-
typing or teardowns and is not easily structured in an explicit
manner. Such knowledge may be considered implicit, meaning
that it exists internally to a designer, or tacit, meaning that it is
not readily expressed externally [20]. Much of design knowledge,
then, can be considered a result of what the Kolb Learning Model
describes as “experiential learning” [21]. Combining the experien-
tial nature of design activity data with the organizational advantages
of a KG could address key challenges in knowledge structuring and
sourcing at both the designer and organization levels.
Within Kolb’s model, the intersection of active experimentation

and concrete experience describes a wide range of design activities
[1], including reverse engineering, a rich source of knowledge for
designers [22]. Reverse engineering allows designers to ascertain
a product’s structure, function, and behavior afforded [22–24].
This empowers design teams to develop models and analyses
based on the form and function of products, ultimately enabling
them to design or redesign products [25]. Central to reverse engi-
neering is the product teardown, also known as product dissection,
in which designers disassemble and analyze an existing product and
its constituent parts [22]. Numerous studies have described how
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teardowns help designers and design teams acquire knowledge [26–
28], but little is captured in academic literature about how profes-
sional designers organize information emerging during and after
teardowns. Understanding designers’ knowledge organization and
structuring behavior is essential as products become increasingly
complex, making their function, structure, and behavior increas-
ingly accessible only to designers or groups of designers with spe-
cialized domain expertise [29,30].
In this work, we explore how experienced designers structure and

organize knowledge and how KGs can be adapted to capture and
use implicit or tacit knowledge for future design activities. We
seek to explore two research questions:

• R1. How do designers organize experiential knowledge in
teardowns?

• R2. How can designers’ knowledge organization behavior
inform the construction of knowledge graphs?

To address these questions, we examine how designers and engi-
neers organize design knowledge from a product teardown by con-
ducting a participatory study with 23 design professionals. Then, we
develop a KG based on this experiential data drawn from a real
design activity. We demonstrate the KG with two extended exam-
ples. The main contributions of this work are (1) presenting insights
into professional designers’ knowledge organization practices and
(2) presenting a novel KG grounded in experiential design data.
These findings represent a preliminary step toward design knowl-
edge bases that more accurately reflect designer behavior and
enable knowledge organization across teams. Ultimately, this
work seeks to support data-driven design tools for organizing and
availing experiential design knowledge emerging from complex
design activities.

2 Related Work
2.1 Knowledge Organization in Design Activities. Knowl-

edge organization and structuring can be considered core activities
of the engineering design process [1,22]. A designer’s ability to
incorporate and structure new knowledge has been demonstrated
to uniquely shape innovative design outcomes [31]. Organizing
design knowledge is essential not just for design results, but funda-
mentally shapes what Harfield calls the “problematization of
design”: how a designer reconciles existing and new knowledge
with a given problem frame, ultimately creating an addressable
design problem [32]. How knowledge is organized during the
design process shapes not just the process itself and its immediate
outcomes, but its transition to a finished product, e.g., through
product architecture [33].
At a macro-level, in the engineering design field, knowledge has

been represented in large semantic networks, or knowledge bases,
which represent knowledge via entities and relations interconnected
in a graph structure [34,35]. Knowledge bases have served as key
enablers for data-driven design methods [36]. Efforts have been
made to create more engineering design-specific knowledge
bases, for example, by mining technical publications, patent data-
bases, or through manual labeling of design knowledge
[17,37,38]. With their continued development and expansion,
these design knowledge bases promise to support further data-
driven product design methods, such as assessing similarity
between design components, providing vector representations or
embeddings of design concepts, or supporting functional modeling
[36,39,40].
At a micro-level, designers have been shown to structure infor-

mation in a variety of ways, from narratives [41,42] to sketches
[43]. Of paramount importance across all of these approaches is
the linking and grouping of knowledge in design [31], behavior
which is foundational to both rules-based design [44] and less struc-
tured, e.g., “innovative” design [45], approaches. In Damen and
Toh’s recent study of experienced design professionals’ knowledge
structuring activity during idea generation, three modes of

organization were observed: clusters, relations, and nests, each
describing a unique way of linking different types of information
[46]. The researchers found that while participant experience and
discipline did not determine their mode of organization, the mode
of organization was related to elements of design ideation results.
Thus, how designers develop relationships between knowledge
appears to shape the outcome of design activity. Earlier work by
Le Masson et al. suggested that engineering design appeared to pri-
oritize a much more systematic and rigorous structuring of linked
knowledge than architectural design, highlighting the importance
of linking and grouping in engineering design [47]. Beyond knowl-
edge immediately relevant to the design task, analogies and similar
knowledge have been shown to shape how designers reach a design
outcome, even when such similarity is distant [48,49]. C-K design
theory distinguishes knowledge (K) from concepts (C) as core ele-
ments to explain design reasoning. Briefly, as Hatchuel and Weil
write, “knowledge” represents propositions that already exist that
can be determined true or false. In contrast, “concepts” are what
Hatchuel and Weil describe as “undecidable”—meaning, their
truth or falsehood can’t be determined. Thus, by C-K design
theory, design is a process of transforming concepts (e.g., the pos-
sibility of a product with particular properties) into other concepts
or ultimately knowledge (e.g., a product that possesses these prop-
erties) [5,50]. In this process, knowledge spaces enable designers to
develop new design concept, what the theory refers to as a K-C
transformation or disjunction [50]. In contrast, linking between ele-
ments in a design knowledge space is also a fundamental operation
in design reasoning, known as a K-K operator or expansion:
forming links to expand the knowledge space through optimization,
deduction, or other activities [5].
A foundational framework for understanding knowledge during

the design process is the FBS model, which combines an ontology
for understanding design knowledge [51,52] with consideration of a
designer’s cognition and experience. The FBS framework has been
applied to manage knowledge in a diverse range of activities across
the engineering design process, from information extraction from
patent databases [53] to defining product requirements [54]. Func-
tion describes what a designed object is for, or its purpose; for
example, in Qian and Gero’s foundational article establishing the
FBS framework, the authors describe an umbrella’s function to be
blocking raindrops [4]. Behavior describes what a designed object
does or its attributes; for example, Qian and Gero describe the beha-
vior of fluid flow through a faucet to be characterized by a variable,
flowrate [4]. Structure describes the components of an object and
their relationship; for example, Qian and Gero describe the structure
of a chair as consisting of a seat, four legs, and a back [4,52].
With the established importance of knowledge structuring and

organization on design, numerous studies have explored how
knowledge structuring and reconciliation shapes core design activ-
ities including idea generation [31,46], developing insights [55],
communicating outcomes [10], and production activities in maker-
spaces [56]. Despite this breadth of research, few studies of knowl-
edge structuring and organization during product teardowns have
been reported. Many studies have explored knowledge and learning
outcomes of reverse engineering tasks [28], but little is known about
the process of organizing and structuring knowledge that enables
such outcomes.
This study extends from previous research on design knowledge

organization in two ways. First, we study knowledge organization
during a virtual teardown activity, allowing us to understand how
professional designers structure knowledge and information as
they engage with teardowns. Second, we examine knowledge orga-
nization through two complementary lenses. We use the FBS frame-
work as an ontology to describe types of knowledge content
represented by information from a virtual teardown, and also as a
prompt for designers to guide their grouping activity. We next
use linking and grouping behaviors to identify knowledge relations.
By examining knowledge organization during teardowns through
these lenses, we can uniquely understand knowledge organization
activities and abstract broad patterns from them.
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2.2 Knowledge Graphs in Engineering Design. KGs can be
defined as networks that acquire and integrate information into an
ontology which is then used to derive new knowledge [57]. KGs
and semantic networks have long served as important references
for large sets of general information (e.g., Google, etc.), but more
recently have begun playing a large role in engineering, helping
accelerate innovation and design. Databases like TechNet and Con-
ceptNet3 are designed to hold vast arrays of technical data and meet
growing knowledge retrieval and sharing needs [17,18]. Such
semantic networks use natural language processing (NLP) tech-
niques to collect data from large databases like the US Patent
network (TechNet) and consolidate them into a single tool. Model-
ing this information in a multidomain KG that is easily navigated by
algorithms enables users to access large amounts of interconnected
technical data and drives novel, innovative solutions [58].
Among this range of existing KGs, semantic versus experiential

graph types are particularly interesting for design, given the high
degree of design knowledge that results from activities and interac-
tion. The databases mentioned above are built by extracting a large
data corpus and mapping it onto a proposed ontology. While mining
large databases like the patent database produces thorough semantic
networks, they have limited application and can be difficult to nav-
igate [59] at a purely semantic level. Bhatia et al. explore the impor-
tance of adding descriptive support to KGs in order to add context
and support user interaction [60]. By building our KG from a
detailed, interactive experience, the data are supplemented by
descriptions and low-level detail that helps situate knowledge,
which has been shown to aid users’ understanding during informa-
tion retrieval [61].
KGs have been used to support data-driven engineering design

[36,59] as well as collaboration amongst large groups like compa-
nies [62]. This particular type of KG’s relevance in design has
been shown to offer strong insights into product-level design
[58], whereas our study explores the utilization of KGs in
systems design, where various electromechanical elements are
working in conjunction with one another. KGs have also begun
appearing as efforts to effectively transfer design knowledge [63],
a task that has been shown to be highly dependent on existing struc-
tures or practices [12]. Furthermore, Song and Fu showed the
importance of visual interactions for seeking inspiration and sup-
porting exploration, validating the use of KGs for user-driven
exploratory search [64].
In this work, we extend upon prior research studying knowledge

organization in virtual product teardowns through representation
and exploration of our dataset within a KG. Unlike previous KGs
built for engineering design applications, our graph captures expe-
riential details collected during the teardown activity, offering
in-depth insights into what relationships people create on the
same set of knowledge. Additionally, we capture the roles of the
participants who contributed to the data in the KG, imparting a
level of participant diversity and nuance to the graph [65]. We
use the unstructured teardown data to inform the structure of our
graph, which can then query domain-specific ontologies con-
structed through a real design activity. We are able to run user-
driven queries on this graph that are systems and large-scale design-
behavior specific.

2.3 Product Teardowns and Dissections. Reverse engineer-
ing is a cornerstone activity of professional design work, practiced
by engineers in sectors ranging from software to machine design
[66–68] as a way to ascertain an existing product’s structure, func-
tion, and value created, ultimately affording the design of new prod-
ucts [22,24]. The product teardown, or product dissection, is a core
component of the reverse engineering of physical products, and
involves, as Dalrymple et al. describe it, “a systematic deconstruc-
tion of an artefact, and the subsequent analysis… of its components

for the purpose of understanding [its] physical, technological, and
developmental principles” [28].
Studies of teardowns in companies have focused on descriptive

accounts of how teardowns integrate with a broader product devel-
opment process. Lauff et al., in their study of methods employed in
firms engaging in early-stage product development, observed that
companies developing consumer electronics and medical device
products leveraged product teardowns during concept generation,
while a company developing footwear products did not [69].
Morgan and Liker describe the role of teardowns in the Toyota Pro-
duction System’s approach to product development [70]. However,
despite the teardown’s centrality in engineering practice, few sys-
tematic studies have explored how companies and professional
engineers and designers engage with teardowns, and specifically,
how they generate and organize knowledge from teardowns.
The product teardown is widely used in engineering education,

where it is prized for its experiential learning and preparation of stu-
dents for industry [71,72]. Accordingly, its usage in classroom
studies has been extensively studied. Teardowns in classroom con-
texts have been shown to help students understand the relationships
between components of a product, and relate products to each other
within product families [73]. Recent work has shown that virtual
teardowns yield similar knowledge as in-person teardowns [74]
and that augmenting virtual teardowns with rich interactions
holds promise for improved outcomes [75]. Explorations of tear-
downs in engineering education provide a robust foundation for
studies of professional designers, who are known to differ from stu-
dents in their engagement with design process [76] while leveraging
cross-disciplinary collaborations [13] and significant experience in
manufacturing and product development [77] in their work.
In this work, we extend upon prior research on reverse engineer-

ing and product teardowns in two ways.
First, we specifically examine knowledge organization behavior

during teardowns, building on previous studies of knowledge
acquired from teardowns. This allows us to examine relationships
between knowledge that emerge from the active experimentation
inherent in a virtual teardown activity, helping us understand tear-
downs from a knowledge perspective. Second, we study profes-
sional designers with an average experience of more than three
years, collecting unique insights on their relationship to product
teardowns, and how professional designers in industry environ-
ments engage with knowledge generated during teardowns.

3 Research Methodology
An overview of this work’s research methodology can be seen in

Fig. 1.

3.1 Teardown Knowledge Collection. Our teardown exam-
ined the Bose Tenor Frames, smart sunglasses with integrated
speakers and a user interaction component. This product was
chosen for its complexity and mix of mechanical and electrical com-
ponents. Three volunteers from the Teardown Library4 performed
and documented the teardown.5

One mechanical engineer with a background in smart glasses
design initiated the teardown, documenting product highlights,
the disassembly process, and observations. This individual then
organized the observations based on the bill of materials hierarchy.
Then, two other volunteers with electrical and mechanical engineer-
ing and product management backgrounds added more observa-
tions relevant to their domains. The term knowledge in our study
refers to individual notes and images, as shown in Fig. 2. Following
this knowledge extraction stage, the research team took the knowl-
edge generated by the teardown volunteers and curated them to

3https://conceptnet.io/

4https://teardownlibrary.com/
5https://medium.com/teardown-library/a-prototype-process-for-remote-

collaborative-teardowns-3250788a7628
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improve clarity, replace short-hand technical terminology, and
reduce the number to an appropriate amount given the time restric-
tions of the study. This process of knowledge extraction and cura-
tion resulted in 24 images and 77 text notes to be used for the study
(examples are shown in Fig. 2). The images and text described

above were then placed in Mural,6 a digital collaboration tool
used for the study.

Fig. 1 (a) Research methodology began with collection of experiential knowledge generated during teardowns from three
expert designers, captured as notes and images, (b) knowledge captured was then organized and related by other professional
designers in an individual design task (N= 23), resulting in concepts, links, and ratings, and (c) concepts and links were then
encoded into a knowledge graph to enable searches of experiential knowledge, which are articulated as several use cases

Fig. 2 Example participant activity, showing organized notes and images, groups (boxes),
note links (solid arrows), group links (dashed arrows), and ratings (circled numbers)

6https://www.mural.co/
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3.2 Participatory Study. A separate set of study participants
were asked to organize the teardown knowledge in a guided
think-aloud session. Participants were provided with the same tear-
down knowledge (as described in Sec. 3.1) and asked to perform
four tasks: grouping the notes, linking the notes, linking the
groups, and rating the links. Afterward, the participants also
answered a survey to collect qualitative data about the tasks they
performed. Having participants work with data from a teardown
they did not perform more accurately represents how organizations
engage with teardown knowledge: insights from teardowns are used
by many in the organization who did not participate in the teardown
activity.
Twenty-three professional designers were recruited for this

study, through mailing lists and study postings. By recruiting pro-
fessionals with various backgrounds, the study captures design pri-
orities driven by multidisciplinary factors, such as manufacturing
constraints and marketing demands, which professionals are
exposed to over their careers. A summary of the role and average
years of experience of the participants is shown in Table 1. The var-
iability in domain expertise and role will allow us to learn how dif-
ferent groups organize knowledge differently. While teardowns are
a subjective, participant-specific activity, Kearney et al.’s work
shows that in the case of engineers performing teardowns on a
given product, less variation appears in knowledge extracted
within treatment groups than across treatment groups given differ-
ent teardown modalities [78]. Thus, it appears that differences in
participants’ subjective knowledge extraction are less than differ-
ences in the format of the teardown, suggesting that knowledge
extracted from a teardown is relatively consistent within a given
teardown modality.
The experiment was conducted on Mural, chosen to enable the

researchers to perform the study remotely but synchronously, and
to streamline data collection. Before the study, participants familiar-
ized themselves with the online tool and practiced the required
functionality.

3.2.1 Study Protocol. After a brief introduction of the tasks,
and the Mural learning session, the participants had 5 min to read
through the raw teardown notes. The participants were given
60 min for the grouping, note and image linking, group linking,
and rating tasks, while thinking out loud to explain their decisions.
An example of these actions is shown in Fig. 2.
First, participants were asked to group similar notes and

images and to assign a name to each group. Subgroups were
allowed. The participants were instructed to group the notes
and images based on three prompt variations: grouping by

function, behavior, and structure. The assignment is randomized.
Of the participants, seven were instructed to group the notes and
images by function, eight by behavior, and eight by structure.
Second, participants were prompted to link related notes and
images to each other by drawing an arrow between the notes
that had been previously grouped. They were also asked to
label the links and to think out loud about the reasoning behind
this connection. Third, participants were asked to find and draw
links between groups they had created, and to label these connec-
tions with a descriptive name. Fourth, participants were asked to
rate the links they had drawn from one to five (slightly related to
very related). Following the completion of these tasks, partici-
pants were asked to complete a survey to report demographic
information and reflect on the usefulness of the tasks for learning
and knowledge transfer.
In the survey, we ask the designer to rate the usefulness of each

activity in learning about smart glasses from one—not useful, to
five—very useful, and explain why they give such rating with
examples. Then we ask them to rate the usefulness of each activity
in sharing knowledge about smart glasses with their team from one
to five and explain why.
For each prompt variation (function, behavior, structure), here is

the detailed breakdown of prompt assignment by roles. For beha-
vior, there were four Mechanical Engineers, one Manufacturing
Engineer, one Industrial Designer, one Systems Engineer, and
one CEO/Manager. For function, there were three Mechanical Engi-
neers, three Manufacturing Engineers, one CEO/Manager, and one
Electrical Engineer. For structure, there were three Mechanical
Engineers, two Manufacturing Engineers, one Industrial Designer,
and one Systems Engineer.

3.3 Data Coding and Consolidation. Mural diagrams and
survey results were registered into a spreadsheet for further analysis
to prepare for coding. Notes and images were coded using the FBS
ontology. Three researchers independently categorized each note,
using rules to guide coding (Table 2). These rules are developed
around the definitions and examples cited in Sec. 2.1. Notably,
we distinguish structure attributes from behavior variables by
arguing that dimensions, weight, etc. of the product, subassembly,
or other components are what Qian and Gero consider behavior var-
iables derived directly or indirectly from structural factors [4]. After
triple-coding, initial inter-rater reliability (IRR), calculated as the
total number of agreements divided by the total number of ratings
[79], was determined to be 58%. As this figure was less than an
IRR threshold of 80%, the coders discussed their disagreements
and resolved differences to reach a 100% IRR. These resolved
and agreed-upon codes are the final codes presented and used for
further analysis.
After the data were encoded, groups with similar descriptions

were consolidated before analyzing the data.

Table 1 Overview of the domain and experience of study
participants

Role
Number of
participants

Average years of
experience

Electrical Engineer 1 >5 years
Mechanical Engineer 10 3 years
System Engineer 2 >5 years
CEO/Manager 2 4 years
Industrial Designer 2 >5 years
Manufacturing
Engineer

6 3 years

Table 2 A small sample of rules used by researchers to classify notes and images from the glasses teardown

Category Generalized rule Example note

Function Action verbs associated with use and assembly “Mic placement indicates beam forming, not noise cancellation”
Behavior Product traits such as weight, dimensions, etc. “Diameter of speaker”
Structure Components of the product “Qualcomm-QCC5127, Bluetooth Audio”

Table 3 Number of occurrences for each link type

Collaboration Tradeoff Requirement Elaboration

Concept 42 26 32 32
Knowledge 26 26 27 48

Note: Concept refers to links between two concept nodes while knowledge
refers to links between two knowledge nodes.
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To do so, keywords were extracted from the group names using
NLP with the TechNet API.7 TechNet is a semantic network of
technical terms that was used to identify higher-level semantic
names from the participant-created group names [17]. Three
researchers independently associated participant-created groups
with consolidated groups using the TechNet-generated group
names, and added additional names. In total, 159 individual
groups were consolidated into 28 new groups.
Additional coding was performed to support KG construction:

for the input into the knowledge graph, the descriptions of links
were consolidated. The categories of links and frequencies assigned
are summarized in Table 3. Two categories of note are Collabora-
tion and Tradeoff, which describe relationships where two nodes
have elements which either rely on one another or must be sacrificed
for one another, respectively. Individual notes were classified using
an additional category for labels that described the knowledge itself,
a set of descriptions that was not present for group links. To catego-
rize the links, two researchers independently classified all links
according to the categories, before resolving discrepancies. Exam-
ples of these link classifications can be found in Table 4.

3.4 Knowledge Graph Construction. In order to create a KG
from the teardown data, spreadsheets containing study data (includ-
ing raw notes, images, and links) were formatted and imported as a
.csv file into Neo4j,8 an open-source graph database management
system. Next, mappings were made to properties within the spread-
sheets, so that they could be effectively attached to nodes and edges
in the graph. Using Neo4j’s native Cypher query language, the data
were converted from .csv files into nodes and edges within the
Neo4j KG. Additional details about the teardown from the spread-
sheets were attached as properties of nodes and edges (Sec. 4.2.2).
Finally, the graph in Neo4j was exported as a .dump file, to be used
in the Neo4j Bloom interface9 for visualizing various interaction
modes. This tool provides near-natural language search on the
KG and intuitive navigation not explicitly requiring Cypher code,
easing graph navigation and representation.

4 Results and Discussion
4.1 How Do Designers Organize Experiential Knowledge in

Teardowns?. In the experiment, participants were asked to group
knowledge (i.e., notes and images) into concepts and create links
between knowledge and concepts. Moreover, participants were
prompted to group either by function, structure, or behavior (see
Sec. 3.2.1 for more details).

4.1.1 Knowledge: Individual Notes and Ideas. On average,
designers used 60% of the total notes (SD= 11.5). Based on single-
factor analysis of variance (ANOVA), there was no significant dif-
ference in the number of notes used by participants with different
prompts, showing little effect of the prompt on the number of
notes used.

Notes’ FBS type, as described in Sec. 3.3, had little effect on their
use frequency. On average, designers used 63% of behavior notes,
60% of structure notes, and 55% of function notes. Designers given
the behavior prompt used 10% more behavior notes than those
given other prompts, but this difference was not statistically
significant.
Behavior notes were over-represented among the most-used

notes. The 52 notes provided to participants consisted of 11 func-
tion, 14 behavior, and 27 structure notes. Of the top six notes
used most by participants, half are behavior, despite relatively
fewer behavior notes overall (see Table 5). These popular behavior
notes were used by nearly all designers. Two were about the overall
product design, two were about the hinge, and two were about the
battery, indicating the high priority of such behavior knowledge to
designers.
These findings point toward the importance given to product

behavior by designers when describing the product. Interestingly,
the behavior notes themselves were diverse in the aspects of the
product they were describing—the hinge mechanism, holistic
design, and battery—suggesting that designers did not fixate on
one particular behavior of the product that might have been speci-
fically promoted. However, as data on specific marketing messag-
ing, or designers’ exposure to it, were not collected, this remains
a question related to these results. Definition and extraction of
product behavior should be an important focus of future work
hoping to automate extraction from teardowns.

4.1.2 Concepts: Groups of Notes and Ideas. In the study, par-
ticipants were asked to group knowledge into similar concepts.
Moreover, concepts could also include other concepts, thus allow-
ing participants to create nested or consolidated concepts.
Designers created six concepts (SD= 2.0) on average to group

together knowledge. Designers from 9 of 23 studies created
nested concepts, 3 from each FBS grouping prompt. Among the
studies with nested concepts, designers given the behavior prompt
on average had three nested concepts (SD= 2.5), those given the
structure prompt had four (SD= 2.5), and those given the function
prompt had five (SD= 2.0). However, these differences were not
found to be statistically significant, given our sample size.
Overall, designers grouped together knowledge into 85 concepts

categorized as structure, 48 concepts under behavior, and 39 con-
cepts under function type. This shows the tendency for designers
to group knowledge relative to their physical structure on the

Table 4 Selected group links by different designers, grouped by topics of team, requirements, and tradeoffs

Start End Link name

Tradeoff Durability Cost “Plastic is cheaper than metal”
Weight Battery “Mass target > battery life”

Requirement Housing Hinge “Sends information/controls”
Logic board Frame “Dictates required space”

Collaboration Features Aesthetics “The art of give and take between design and engineering”
Aesthetics Manufacturing “The first processes towards design sacrifice”

Table 5 The six most-used notes, their FBS type, and the
number of participants that used them

Note FBS type Studies

“Extremely Lightweight (47 g)” Behavior 20
“Hinge body and cover appear to be MIM steel” Structure 19
“Battery size is not constrained by size, but likely by
weight, to improve comfort”

Behavior 19

“Polarized poly-carbonate lenses” Structure 18
“This hinge is an effective design, simple, low cost,
low part mechanism”

Behavior 18

“Battery life: Up to 5” Behavior 18
7https://github.com/SerhadS/TechNet
8https://neo4j.com/
9https://neo4j.com/product/bloom/
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product, as opposed to the organization of knowledge notes, where
behavior was largely over-represented.
For learning purposes, designers find the activity of grouping

knowledge into concepts more helpful than linking or rating. We
sought to determine if designers found a significant difference in par-
ticipants’ perceived usefulness of the three core tasks of the study—
grouping, linking, and rating for learning and knowledge transfer.
We conducted a one-way ANOVA test with a single factor (usefulness
for learning) and three levels (the tasks). We found that a significant
difference in perceived usefulness between the three tasks existed (p
<0.05, N=23, F=8.04). Post-hoc comparisons using Tukey’s HSD
test revealed significant differences between grouping into concepts
and linking (p<0.05) and rating (p<0.01), revealing that grouping
is more impactful for learning than other actions. In the survey, design-
ers rated grouping equally important for learning (4.5, SD=0.6) and
knowledge transfer (4.4, SD=0.7), on average.
These findings suggest that designers view different teardown

activities to be useful for different purposes. Designers find group-
ing helpful in identifying commonalities in design and discovering
design intents of individual components. Grouping also leads
designers to consider how different aspects of the design inform
and affect each other. The survey rating indicates that grouping is
the most helpful activity if the goal is to learn from a teardown.
Moreover, designers reported that in a professional environment
with multiple teams involved, grouping could help identify relevant
design goals for each team, while group nesting could help propa-
gate design tasks across teams. This suggests that the activity of
grouping of teardown knowledge could play an important role in
knowledge transfer between teams.
These findings indicate that, during teardowns, activities around

grouping of design knowledge, rather than linking or rating, are
most effective for personal learning, as well as transferring knowl-
edge to others. These results indicate that groups and group names
would be a rich source of design knowledge for future work inves-
tigations of teardowns.

4.1.3 Link. Participants were asked to link both knowledge and
concepts to each other, to represent existing relationships between
entities. Designers created six knowledge links (SD= 6.3) and six
concept links (SD= 2.8) on average. Different FBS grouping
prompts did not affect the number of links participants used.
Three participants used more than 15 note links; this was attributed
to their linking of images and notes to illustrate their relationships,
which was not done by other participants.

A diversity of links evidence a variety of ways designers orga-
nize knowledge in design tasks. Each neighborhood of nodes rep-
resents links from multiple studies. Figure 3 shows two such
neighborhoods around “cost” and “manufacturing.” The groups
connected to “cost” are from five different studies, and two connec-
tions are made multiple times by different designers. The groups
connected to “manufacturing” are from seven studies, and four con-
nections are made multiple times by different designers.
The varying connections and relatively low overlap suggest that

designers form relationships between groups of product knowledge
differently, and that there may be value in sourcing knowledge
organization from larger numbers of designers to reveal unexpected
ways of relating knowledge. The observed diversity in knowledge
organization might be an indicator of the diverse backgrounds of
the participants, as different expertise may cause varying informa-
tion to be linked together. If true, this indicates that varied back-
grounds in generating product knowledge can lead to valuable,
diverse information. This extends to current knowledge suggesting
that crowdsourcing could be a valuable way to gather unique
insights on designers’ approaches to knowledge organization, not
just knowledge itself.
Designers primarily use links to describe design tradeoffs,

requirements, and team collaboration. We observed three distinct
reasons why designers developed links between groups of informa-
tion (Table 3). First, designers made links to represent design tra-
deoffs. Participants used specific language to express tradeoffs,
such as comparative adjectives (e.g., cheaper, more) and signs
(e.g., >, =). Second, designers used links to identify design
requirements, particularly regarding functional or structural
aspects. Specific language that signified design requirements links
included verbs for the name of the link. Finally, participants also
used links to represent opportunities for team collaboration.
During these studies, we observed these participants discussing
how their knowledge groups map to different teams within their
organization, and how frequent communication between these
teams may help the design project. Perhaps of note is that the
three designers in question held management roles within their pro-
fessional organization (e.g., company founders and project
managers).
These findings highlight the diverse roles that relational knowl-

edge, captured in links, can play in establishing a designer’s knowl-
edge space. Designers’ use of language is particularly important in
distinguishing types of knowledge in links. Designers differentially
use adjectives, verbs, and explicit references to organizational teams
to indicate tradeoffs, requirements, and collaboration, respectively.

Fig. 3 Neighborhoods of the highest betweenness centrality nodes: (a) “cost” and (b) “manufacturing” have centrality of 0.09
and 0.07 respectively. Links are coded in red, and nesting are coded in blue (blue lines denoted by points at each end).
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This suggests that language can be a useful mechanism to uncover
insights about participants’ knowledge organizing behavior. Fur-
thermore, specific types of language could be a crucial facet in
developing realistic design knowledge networks, and warrant
further investigation.
Function notes were the least linked. Among the 67 note links

designers created across all studies, only 13 involved function notes
(see Fig. 4(a)), none of which linked one function note to another.
As can be seen in the links, both other note types are equally repre-
sented. The lack of note links to and from function could suggest (1)
an implicit prior understanding of function-behavior relationships
describing the purpose of the product, allowing them to remain
undocumented; (2) design tradeoffs, a key observed purpose of
links, do not involve function and happen instead between behavior
and structure; and (3) designers might prefer using group links to
illustrate functional requirements, as discussed in Sec. 4.1.3.
Designers find linking more helpful for knowledge transfer

than for learning. Participants rated linking as more valuable for
knowledge transfer (4.2, SD= 0.8) than for learning (3.8, SD=
0.9). However, single-factor ANOVA (p= 0.16, N= 44, F= 2)
did not reveal a significant difference. This suggests that the activity
of searching for relationships between groups is conducive to think-
ing at a higher level about disparate aspects of the design. The
selected quotes (Table 4) suggest that finding links between
related notes, images, and groups can help uncover tradeoffs
between different design goals, which in turn supports knowledge
transfer between teams in professional environments. However, as
no statistical significance was found in the ratings, these findings
warrant further investigations.
In our survey, participants commented that the activity of note

organization helped them learn about the product, as well as transfer
this knowledge to others. On a 1–5 scale, designers rated the overall
organizing activity 4.2 (SD= 0.5) for learning, and 4.5 (SD= 0.7)
for knowledge transfer. All designers found that organizing knowl-
edge helped enhance their understanding of the product. Several
designers commented that different team environments may have
varying dynamics and yield different outcomes for the organization
task. In regards to knowledge transfer, several designers expressed
that access to physical components or components in virtual reality
environments would improve knowledge transfer. However, for
learning, all designers found photos sufficient for transferring
knowledge to others.

4.2 How Can Designers’Knowledge Organization Behavior
Inform the Construction of Knowledge Graphs?. After collect-
ing and analyzing data on knowledge organization in product tear-
downs, we sought to create a structured tool to navigate this
information. This section presents and interprets the technique
used to transform the knowledge organization data gathered
through the teardown activity into a KG. We explore the properties
and capabilities of the graph in order to showcase its abilities as a
tool for organizing, learning, and transferring knowledge.

4.2.1 Knowledge Graph Schema. In order to situate the tear-
down data in a KG, we propose the schema in Fig. 5.
This identifies the four node types found in the KG: knowledge,

media, consolidated concepts, and concepts. Knowledge and media
both exist as raw data generated during the product teardown activ-
ity. Note that media nodes contain images and illustrations from the
teardown activity. The consolidated concepts, concepts, and edge
types were established by a separate set of participants in the knowl-
edge organization portion of this study (Sec. 3.2). Concepts are
groups of knowledge, media, and/or other concepts. Consolidated
concepts are high-level groupings of concepts. Examples of each
node type appear in Fig. 5, with further examples listed here: con-
solidated concept—“Housing,” concept—“Enclosure Design,” and
knowledge—“One piece effective bi-stable hinge design.” Addi-
tionally, the two edge types are identified: relates and belongs.
Relates refers to the direct linking between two nodes, while
belongs refers to the nesting of one node under another, following
ontology proposed by Damen and Toh [46]. Edges categorized as
belongs are directed, while edges categorized as relates are undi-
rected. Figure 5 identifies the relationships that exist within the
KG and visualizes the hierarchical relationship between the node
types.

4.2.2 Graph Properties. The KG combines the experiential
nature of the teardown study with ontology-based data coding
and consolidation. These features manifest themselves as properties
of the graph. Table 6 shows the properties of each node type. The
product property associates the node to the specific product it
refers to, while name and description are used as individual node
identifiers. FBS is used to encode specific nodes according to this
ontology. Role refers to the job and years of experience that the par-
ticipant who encoded a specific node held. Table 7 shows the

Fig. 4 Total number of (a) knowledge links and (b) concept links between different FBS types of groups
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properties of each edge type. Description appears as a label explain-
ing the reason why two nodes were connected by participants using
the relates link. The edges also identify the role and years of expe-
rience of the participant who created them. The strength property
refers to a participant-rated strength value of the connection
between its two nodes. Finally, the type property refers to the con-
solidated code assigned to the edge, summarized in Table 3. Here,
we have transformed our data into an accessible and scalable repre-
sentation, with properties that enable insightful graph traversal, as
given in the next section.

4.2.3 Graph Search. Navigating the graph with a specific
query in mind is enabled by the intentional search features of the
dataset. These provide results to directed questions that may arise
from product teardowns or experiential activities as a whole,
which many designers use as tools to discover and understand exist-
ing products’ designs. In this section, we propose several envi-
sioned search queries and user interactions that are driven by the
graph properties and which leverage the experiential nature of the
graph, and then situate them in extended examples (Sec. 5).

Shortest path. In order to learn more about how our data are con-
nected, we can choose two nodes of interest and view the shortest
path between them. This pattern unearths the elements connecting
pieces of interest and can provide clarity in the context of a
product teardown. This is illustrated in Fig. 6, where we explore
how the idea of the smart glasses being lightweight connects to
the important battery component. Through this path, we learn
about the relevance of the battery size to the lightweight aspect of
the glasses and gain awareness of the design choices made for the
user.
Centrality. Betweenness centrality of a node vmeasures the pro-

portion of shortest paths between all nodes that pass by v, and is
defined as follows:

cB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

(1)

where V is the set of nodes, σ(s,t) is the number of shortest
(s,t)-paths, and σ(s,t|v) is the number of those paths passing
through some node v other than s,t.
For example, 16% of shortest paths between all concepts pass

through cost. Features, housing, cost, and manufacturing have the
highest betweenness centrality among all nodes. These highly con-
nected neighborhoods are shown in Fig. 3, highlighting important
aspects for successful smart glasses products.
The number of central nodes in the graph suggests that the partic-

ipants might have various opinions regarding the most important
aspects of the product. This could be an indicator of the diversity
in backgrounds of the participants, ranging from technical
domains like manufacturing and electronics, to managerial roles.
This finding also points to the wide range of design knowledge
that is possible to collect from teardowns, an important aspect to
consider as future work explores how to leverage design knowledge
from teardowns to inform data-driven design approaches, e.g.,
machine learning models.
Filter by node and edge properties. The graph can be navigated

by the various properties of the nodes and edges. First, navigating
the connections between nodes to find links classified as tradeoffs
or dependencies highlights where important design decisions and
sacrifices must be made. The ability to search the graph by link
type helps users learn more about design intent and why certain fea-
tures are designed that way relative to neighboring features. Next,
the graph can be filtered to see nodes tagged under a specific FBS
heading, in order to find the important functions, structures, or
behaviors of the product. Finally, the graph can be filtered for
nodes appearing by participant role (manager, engineer, etc.) or
by participant experience (in years) in order to learn how diversity
in participants brings new paths and connections to the graph.
Measure strength of connections. Finally, the strength of con-

nections within the graph can be used in order to find and rank
the most important paths in the knowledge base. This metric can
be used by considering the participant-ranked relationship

Fig. 5 Guiding schema of the teardown KG. Note that nodes
and edges are color coded by type within the KG. Examples for
each node type appear below their labels for clarity.

Table 6 Node properties in the KG

Product Name Description FBS Role

Consolidated Concept ✓ ✓
Concept ✓ ✓ ✓ ✓
Knowledge ✓ ✓ ✓
Media ✓ ✓ ✓

Note: The media nodes contain images and illustrations from the teardown
activity.

Table 7 Edge properties in the KG

Product Description Role Strength Type

Relates ✓ ✓ ✓ ✓ ✓
Belongs ✓

Note: The additional properties from those in Table 6 are strength
(participant-assigned value of how related two nodes are) and type (see
Table 3).

Fig. 6 The shortest path between two nodes of interest (light-
weight on the bottom left and battery on the top right) highlights
the connections participants create between major elements of
the teardown
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strengths, which provides insights into connections the participants
found particularly significant. Additionally, the strength metric can
be calculated through either number of unique paths between a start
and end node or by number of unique contributors to a particular
path or subsection of the graph. Both of these metrics are indicators
that those particular connections were consistently produced among
the variety of participants.

5 Knowledge Graph Use Case Examples
Given the various node properties of the graph, we envision this

graph as a tool to execute queries in order to filter through the data
and find specific insights. In this section, we present examples of
potential use cases that would leverage this KG. We present these
queries as modular searches, which can be combined to answer
complex questions regarding the teardown data. Queries for both
intentional and exploratory searches are presented, allowing graph
users to find both answers to specific questions as well as use the
graph as a tool to explore the teardown data meaningfully. These
queries serve to highlight possible ways in which the graph may
be used through digestible examples.

5.1 User-Driven Intentional Search. By combining many of
the envisioned search queries above, we look to enable users to
learn through intentional search, navigating the graph to answer
specific queries. We envision that the KG can serve many purposes
to designers, from enabling analogical inspiration to gauging exist-
ing products. Here, we explore an example centered around inten-
tional search, showcasing many of the insights and abilities our
KG holds for benchmarking an existing product. Because of the
“smart” nature of the product dissected in the teardown, we can
infer that an important feature will be the battery that runs the spe-
cialized features of the glasses.
We begin by looking at the question “Which elements are depen-

dent on the battery?”, a query a designer might be interested in
learning more about. By querying for battery and finding its
related concepts, we identify groups that are directly relevant to
the high-level idea of the battery. Next, we explore a level of con-
cepts further away, filtering for relations which are classified as
dependencies or tradeoffs. Now, we’ve identified the specific con-
cepts that are considered dependencies or tradeoffs with the
battery, and want to abstract one level further, in order to get a
clearer understanding of which high-level consolidated concepts
answer our initial query. Navigating the graph shows us the final
elements that are dependent on the battery functioning and the
result to our query: Audio, Logic board, Cost, Housing, Weight,
Right assembly (Fig. 7). These elements are represented as nodes
in Fig. 7, appearing as the outermost light blue nodes.
We rate the strength of our results using the metric of number of

unique paths. Here, we count how many unique paths exist between
a start and end node, with a higher number of paths indicating more
participants created relationships between these nodes. In this case,
our start node is always battery and our end nodes are each of the six
results mentioned above. As shown in Fig. 7, the audio node is
ranked as the strongest result with four unique paths between it
and the battery. These four pathways are highlighted in green to
show their prominence in the overall results. Users can explore
the pathways between the two nodes to learn more low-level
details of the importance of this connection.
Finally, there are eight unique contributors to this overall result-

ing graph across five unique roles, exemplifying the diversity of
participants involved in this knowledge organization process. This
suggests the importance of curating knowledge from different back-
grounds to account for varying design priorities, capturing both
very common threads as well as unique perspectives.

5.2 User-Driven Exploratory Search. Apart from very
directed queries, the graph also supports undirected exploration.

This lends itself to users spontaneously finding insights and sup-
ports the open-ended, fact-finding nature of product dissections.
In this section, we propose a few potential pattern structures that
hold interesting design implications, highlighting the KG’s ability
to help drive innovation. We focus on presenting examples
around design tradeoffs given the topic’s high importance in
design decision-making [80].
Collaboration/Tradeoff patterns with FBS grouping. We can

discover tradeoffs or collaboration patterns that are tied to FBS
grouping, allowing for additional patterns that expose critical
decision-making areas and pathways. For example, given that
pathway A is a tradeoff of B and B is reliant on C, we infer that
A is reliant on C and establish a new important link. An example
is shown in Fig. 8, where the behavior-classified concept of Works-
Like (left) is a tradeoff of the structure-classified concept of Assem-
bly/Manufacturing of a Prototype (middle). The middle node is
reliant on Engineering Validation Tests (right) and therefore
creates a new inferred collaboration link between the outer two
nodes, generating new knowledge from the graph by emphasizing
the need to have operational “works-like” models in order to com-
plete the validation tests run on these prototypes. The detailed KG
also contains descriptions for links, providing another level of depth
to the rationale behind these connections. Exploring these various
relationship types among specific FBS types can expand to longer
pattern pathways and drives insights into understanding design
intent.
Structure-behavior tradeoffs. In this pattern, we wish to utilize

the FBS ontology and link classifications to learn more about these
relationships. In this example, we begin with a desired behavior we

Fig. 7 Intentional search query results, showing the small
portion of the graph relevant to our search. The battery node is
labeled B, and the results to our query appear as the outermost
light blue nodes. The strongest result is the audio node, given
four unique paths starting from battery (labeled B) and ending
at audio (labeled A). These paths appear bolded (and highlighted
in green) in the graph. Note, each node contains text that is
legible to user but does not appear for visualization purposes.

Fig. 8 Example of a linear pattern highlighting a tradeoff-
collaboration relationship. The Works-Like concept (left) is a tra-
deoff of the Assembly/Manufacturing of a Prototype concept
(middle). Finally, the middle node is labeled as reliant on Engi-
neering Validation Tests concept (right), creating a new inferred
link between the outer two nodes.
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wish to achieve in the glasses (the quality of them being light-
weight) and want to learn which structures are important toward
achieving this behavior. We search for a structure-behavior tradeoff
pattern linked to our desired behavior node and learn that the right
temple structure is important (Fig. 9), with the graph providing an
image of the temple area directly from the teardown activity. In
Fig. 9, we see the detailed pathway and nodes connecting our
desired behavior and its supporting structure, and have the ability
to abstract a level to the concept level to learn about the higher-level
structure that is playing a role in this behavior, in this case, the
glasses frame. This pattern opens up the graph to explore these rel-
evant areas and provides link descriptions to justify why this pattern
appears.

6 Implications
Our results indicate three insights into how designers organize

and acquire knowledge from product teardowns. First, we observe
that while designers find grouping data to be more effective for
learning, linking proved more helpful for knowledge transfer.
Second, we find that designers employ links between data much
more frequently than they do nests, and that links primarily serve
to identify tradeoffs, requirements, and opportunities for team col-
laboration. Finally, a graph analysis reflects the diversity of perspec-
tives on knowledge organization emergent in a constrained
teardown activity.
The findings from our proposed interaction modes suggest that

the intentional search capabilities of this KG can support knowledge
retrieval from a design organization activity, and have several impli-
cations for organization and management of engineering design
knowledge. First, at the level of an individual designer, specific to
Wallace et al.’s concept of product knowledge [81] and to
product teardowns especially, intentional search of our KG can
help designers uncover design intent and understand a product’s
affordances.
Second, also at the level of an individual designer, intentional

search as illustrated here can help navigate the inherent tensions
in levels of information that Damen and Toh identified in the engi-
neering design process [82]. Intentional queries could also allow
designers to more easily navigate tensions related to levels of effec-
tuation of information (effectuation and causation), by allowing
them to rapidly iterate on various modes of understanding an exist-
ing knowledge base, rather than awaiting acquisition of new knowl-
edge to support their goal.
Lastly, at the level of organizations, the intentional search pre-

sented here offers a way for organizations to connect open-ended,
nonspecific queries with detailed engineering design knowledge
related to both product design and design process. Particularly

intriguing is the possibility for KGs like ours to share implicit or
tacit knowledge across organizations beyond specific engineering
design contexts. This builds upon the capabilities of current seman-
tic networks built for engineering design, which are well-supplied
with explicit, easily transferable information, but lack this critical
element of detailed, implicit knowledge. Additionally, our KG’s
descriptive and accessible properties add a dimension not com-
monly seen in the current KG space.
Many implications of intentional search described earlier apply to

exploratory search as well: enabling more effective discovery of
product architecture and affordance during teardowns; helping
designers navigate tensions between levels of information; and
more readily availing design-specific and implicit or tacit knowl-
edge across an organization. There are several implications specific
to exploratory search capabilities of this KG, however. First,
extending on previous findings by Li et al. that suggest KGs can
be used to drive novelty in product design [58]. In particular, nav-
igating the graph using the proposed patterns can aid in clarifying
design intent and identifying critical decision-making areas. This
connection highlights the support that KGs provide in using tear-
down information to identify areas of value and opportunity in engi-
neering design. Second, exploratory search via the proposed
“shortest path” pattern can particularly afford a balance between
effectuation of knowledge and causation [82] by having a designer
articulate an open-ended question (causation), then assembling
existing knowledge in the most efficient manner (effectuation) to
address it. Finally, while many other engineering KGs allow for
exploratory search of their data, the nature of our teardown KG
builds upon these KGs by facilitating clarity of connections
between multiple nodes, and incorporating visualizations and
media that support the descriptive nature of the graph.

6.1 Future Work and Limitations. Our findings provide a
foundation for several directions for future inquiry at the nexus of
knowledge organization, design theory, and data-driven design.
First, we can conduct user studies to further explore the modes
designers interact with knowledge organizations. Exploration of
other knowledge-intensive design activities besides teardowns—
e.g., product life cycle management or user research synthesis—
would help expand upon and validate our insights into knowledge
organization.
Second, the current data collection process can be time consum-

ing, which restricts the number of insights and products included in
the graph. Future work might leverage the current findings as a
guide for collecting specific design knowledge data from other
sources, such as patent databases, Wikipedia, online repositories
of design challenges, or at the time of creation in computer-aided
design and other design tools. Leveraging the underlying explicit

Fig. 9 Example of a structure-behavior tradeoff connected to our lightweight node of interest.
Starting at the lightweight node on the bottom left, the pathway is shown with edge descrip-
tions to show the detailed justification of connections to a related structure, the glasses’
right temple
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relationships contained in existing semantic KGs might help auto-
mate the construction of the graph schema, as well as support unsu-
pervised classification of knowledge, concepts, and links with NLP.
This would allow for a more scalable, generalizable, and user-
centered KG, in support of knowledge-based design methods.
Lastly, automated collection of design data, on the order of 1000

products, might enable the use of graph neural networks for deriv-
ing latent feature representations of knowledge, concepts, and links.
We look to expand the graph representation and leverage graph
neural networks to learn how to present design knowledge to max-
imize learning by the designer, while supporting knowledge transfer
to stakeholders in other domains. We see our work as an initial step
toward this vision.
Additionally, there are several improvements that would make

the approach presented in our work more scalable and generalizable
and address its limitations. First, while we sought to preserve the
language of the designers involved in the original teardown, the
notes from the teardown could be made more generic and applicable
to several products, to remove any bias from emotional connections
to details such as the company name. Second, more than one
product could be shown, providing a wider range of information
for participants and generating more diverse knowledge organiza-
tion data across multiple products; similarly, more participants
could participate in the teardown of said products, rather than just
three as in our study. Third, having a large enough sample of par-
ticipants under different roles can allow us to study how roles
affect knowledge organization. Finally, group consolidation could
be done with the use of NLP for consistency, leading to more accu-
rately consolidated groups for data analysis. Addressing the above
limitations would help expand the work presented in this paper
toward an automated knowledge organization tool. By taking in
data from current and future design knowledge bases, our work
points toward a tool which learns to organize sparse and biased
design knowledge.

7 Conclusion
In this work, we collect data about the organization of design

knowledge from 23 design professionals by giving them unstruc-
tured design knowledge from a product teardown and guiding
them through a series of tasks to add structure—knowledge, con-
cepts, and links. The data we capture is diverse: it includes both
implicit and tacit information and captures different patterns of orga-
nization. To fully represent the richness of the data, we propose a new
knowledge graph. The knowledge graph enables complex queries,
and supports both intentional and exploratory search, which are
explored as extended examples. These findings enable valuable
insights into design intent and innovation, and how to structure
and share knowledge in complex design activities and organizations.
Careful elucidation of the knowledge extraction and organization

behavior of professional designers engaging in teardowns is requi-
site for the development of impactful design support tools. Because
teardowns can uniquely afford designers’ learning through active
experimentation and concrete experience, insights gleaned from
studying the approach can be extrapolated to describe other knowl-
edge generating and organizing activities. Similarly, a nuanced
understanding of knowledge organization practices could inform
not just better support tools, but more realistic knowledge bases
in support of more effective data-driven design.
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