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The process of design often involves translating abstract semantic 
information into visual artifacts. To understand how psycholinguistic 
properties of semantic prompts impact the design process, we conducted a 
behavioral study with 515 participants who were asked to design a chair that 
reflected a prompt word. During the task, participants made various 
aesthetic and functional choices to realize their design vision. We 
investigated how semantic richness (imageability and number of semantic 
neighbors) of prompts and semantic similarity between prompts impacted 
the characteristics of the final design. Results indicate that different outcome 
types (functional and geometric) are associated with semantic properties, 
while prompt similarity is related to outcome differentiability. The results 
reveal the complex relationship between semantic inputs and human-
generated outputs in a creative context, with implications for how multi-
modal (text, image, and 3D) systems should be built to complement design 
activities. 

Introduction  

Magical and seamless. Ultimate adventure machine. These words were used 
to describe the Apple Vision Pro spatial computer and Toyota Tacoma truck 
in their respective product launch press releases in 2023 [1, 2]. Beyond using 
words to describe functional performance, abstract words can give designers 
the power to influence product purchasing, use, and overall brand identity 
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[3]. In early stages of design, long before a product launch, such abstract 
words can guide inspiration for designers as they generate new ideas, which 
are later realized visually and/or physically. Different interpretations of 
these abstract words can lead to diverse outcomes, which is advantageous 
for spurring creative ideas and ways to embody them in design [4, 5]. 
Recently, it has become possible to leverage multimodal large language 
models, which computationally represent relationships between semantic 
and visual information, as a resource for creative problem solving. These 
models provide a means to directly generate design-related artifacts through 
semantic specification [6, 7]. However, different types of semantic 
information may shape the underlying psychological process that results in 
a design. Therefore, to understand what outputs designers expect or desire 
from multimodal models, it is first necessary to understand whether different 
types of semantic information elicit variation in human designers’ outputs.  

To investigate whether prompt word choice impacts design choices, we 
conducted a behavioral study focused on how humans translate abstract 
semantic information into visual artifacts during a design task. We address 
the question: what is the relationship between the psycholinguistic 
properties of abstract words used as design prompts and their resulting 
outcomes? We consider how inherent characteristics of semantic richness, 
1) the ease with which a word evokes a mental image (imageability) and 2) 
the quantity of a word’s contextual associations (the number of semantic 
neighbors) influence the generation of similar or dissimilar designs. 
Additionally, we examine 3) how the strength of words’ associations with 
each other (semantic similarity) is reflected in the design output.  

Related Work 

The Use of Semantic and Visual Representations in Design 

Connecting semantic and visual information is central to design practice. 
Significant effort in design research has been placed into product semantics, 
"the study of the symbolic qualities of man-made forms in the context of 
their use, and application of this knowledge to industrial design" [3]. Studies 
that seek to connect semantics with visual design representations often use 
methods such as semantic differential analysis or pairwise preference 
modeling, which rely on ratings and/or decisions to associate existing 
designs to the semantics in question [8]. At the other extreme, computational 
tools have been built to assist designers in turning vague ideas, or semantic 
intent, into visual designs, utilizing text [9, 10], images [11], or both [12]. 
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In our study, we investigate how properties of the semantics being used for 
design influence outcomes of the creation process.  

In addition to relying on the processing of semantic information, 
problem-solving involves manipulating visual material using the “visuo-
spatial sketchpad” [13]. Spatial information, associated with movement or 
manipulation in the environment, and visual information, like color, is used 
to construct visual imagery. This process is particularly relevant for the 
creation of drawings as visual design representations [13]. For example, an 
analysis of sketches generated in response to a semantic keyword (a chair 
that portrays a “sad image”) demonstrates different paths taken to implement 
abstract ideas into design forms [14]. In one path, final forms arise from 
participants’ experiences, such as remembering body postures that express 
sadness. In another, participants iteratively create forms to represent sadness 
directly, rather than through more complex associations. When participants 
try to directly represent abstract concepts, mental searching can be limited 
to stereotypical forms, leading to outcomes that are less novel [14]. It 
follows, therefore, that word processing behavior may be linked different 
types of design outcomes. 

Semantic Properties and their Impact on Cognition and Creativity 

Understanding how semantic information is represented cognitively is 
relevant to design because words are used for both inspiring and 
communicating ideas (represented semantically and visually). The construct 
of semantic richness, consisting of dimensions such as the number of 
semantic neighbors, imageability, body-object interaction, and emotional 
valence, has been used to understand word processing behavior [15]. The 
properties that define such semantic richness are discussed below. 

The concreteness of words impacts how they are processed. Higher 
concreteness (less abstract), often defined by the ability to be experienced 
by the senses, has been associated with enhanced recall, recognition, and 
comprehension [16]. A positive correlation has been found between word 
concreteness and imageability, which refers to the ability to generate images 
for the given word, making it relevant for contexts involving semantic-to-
visual translation [17, 18]. Nonetheless, findings are mixed as to whether 
both visual and semantic information are helpful for predicting the 
processing of abstract words [19] or whether abstract words are implicitly 
visually grounded through their connections to concrete words [20]. Due to 
the importance of visual information in design and the open questions in this 
area, imageability is a word property considered in our study. 

Additionally, abstract (e.g., freedom) vs. concrete (e.g., bus) words can 
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differ in their representational structure in semantic memory. For instance, 
evidence shows that abstract words may be better organized by word 
associations compared to concrete words, which may be better organized by 
semantic similarity, even in the context of semantic-to-visual tasks [21, 22]. 
Semantic neighborhood density is suggested to impact behavior, with 
lexical decision reaction times found to be fastest for words with sparse 
neighborhoods [23]. For abstract concepts specifically, however, the 
existence of many semantic neighbors facilitates lower lexical decision or 
naming times [24]. Aside from standard word comprehension and recall, 
semantic richness of words may relate to creative thinking. Ideas generated 
when provided a semantically rich word, defined by having many semantic 
associations, have been found to be higher in quantity but less creative in 
quality [4]. Furthermore, the associative theory of creativity suggests that 
creative combinations can be developed by connecting concepts that are far 
apart, particularly through semantic memory structured by similarity [25]. 
At the same time, the importance of semantic memory structure may be 
more relevant to verbal (i.e., concerned with semantics) rather than figural 
(i.e., concerned with images) creativity [26]. In our study, therefore, 
semantic similarity, which is based on the embedding of words in the 
context of other words, is considered along with two different dimensions 
of semantic richness: imageability and the number of semantic neighbors.  

Experimental Design 

A behavioral study was conducted to investigate the process of translating 
abstract concept words into 3D designs. The study consisted of a task, where 
participants were presented with a word and responded with a sequence of 
actions, and a post-task survey. We tested two hypotheses: 1) Features of 
design outcomes can predict linguistic properties of prompts (imageability 
and the number of semantic associations), and 2) Similar prompt words 
result in similar designs. 

Participants 

Data was collected online from 540 US-based participants, recruited from 
Prolific [27]. Eligible participants (95%+ approval rate, 500+ previous 
submissions) were not required to have design experience, only an interest 
in the study. Pre-analysis data filtering left 515 participants for data analysis 
(gender identification: 317 men, 180 women, 5 non-binary or other, 13 
prefer not to answer or not applicable). Participants were compensated at a 
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rate of $15/hr for their time (M = 24.33 minutes, SD = 16.08 minutes). The 
methods and procedures used in this study were approved by the WCG IRB. 

Design Task and Interface 

During the study, each participant was presented with a word and asked to 
use a custom online interface to design a chair that reflected that word. 
Participants completed a practice task to get accustomed to the interface 
(Design a creature that is cute). Then, they were presented with their actual 
task: Design a chair that is [sleek, modern, etc.].  

The participants first had to select one of four starting points, which were 
discrete combinations of what we refer to as function and geometry: static 
and multiple pieces (most closely reflecting a “prototypical” four-leg 
chairs), static and singular piece (a change in geometry), moving and 
singular piece (a change in function), or moving and multiple pieces (a 
change in function and geometry).  

Once they selected the starting point, they moved to a screen where all 
the other possible actions were available to them. Importantly, participants 
were able to freely explore their options, change their design fully, or modify 
it slightly without any time constraints. They could make a series of discrete 
or continuous changes to the design, related to its function (able to move vs. 
static), geometry (multiple pieces vs. a singular piece, size, or shape), and 
perceptual (color, texture). The full task structure is shown in Fig. 1.  

Fig. 1 Task structure and examples of outcomes from participants 
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Some changes, like color and texture, could be changed for the whole 
design or for individual parts. The goal was to provide choices that could 
map to higher-level intentions but also enable sufficient creative freedom. 
The available choices were not exhaustive but were specified based on 
different types of chairs available in online 3D model repositories (e.g., the  
chair category of the ShapeNet dataset [28]). Fig. 2 shows the interface. 

Fig. 2 Interface for completing task 

Once they were finished, participants were asked to rate (from 1 to 7) 
and describe their satisfaction with their design, indicating both the extent 
to which it reflected the prompt (How well does your final design satisfy the 
prompt “design a chair that is [sleek, modern, etc.]”?) as well as their 
preference (How satisfied are you with your final design?). Participants also 
had the option to start the task over and create one or more additional chairs 
after submitting their first design. All actions and responses were recorded, 
as well as a constant-angle screenshot of the participants’ final designs. The 
task was deployed via Qualtrics [29] survey with an embedded web 
application that was developed in Unity, using the Unity Experiment 
Framework [30] and the Archimatix [31] parametric modeling extension. 
Data from the task was sent to a database in Amazon Web Services. 
Participants also completed post-task questions about their engagement in 
the task, demographics, occupation, and creativity. Here, only outcomes 
(screenshots and recorded final states) from the first session (no ratings, 
survey responses, additional sessions, or actions) will be discussed. 
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Semantic Richness and Similarity of Prompt Words 

The words presented as prompts in our study were primarily selected from 
words that had previously been associated with product semantics in a 
design context, for items such as furniture, household items, or even cars 
[32 – 38]. A subset of 12 relevant words was selected to encompass a diverse 
range of values for two item-level linguistic properties (imageability and the 
number of semantic neighbors) and a pairwise semantic similarity.  

Table 1 Word prompts and linguistic properties. Properties below the median for 
each measure are labeled “low” and properties above the median are labeled “high.”  

Word Imageability 
Rating 

# of Semantic 
Neighbors 

Number of 
Participants 

Versatile 3.04 (low) 29 (low) 43 
Dependable 3.33 (low) 0 (low) 42 
Sleek 3.50 (low) 0 (low) 44 
Modern 3.51 (low) 9031 (high) 43 
Dynamic 3.73 (low) 5278 (high) 42 
Confident 3.77 (low) 866 (low) 44 
Unique 3.79 (high) 8313 (high) 43 
Exciting 3.96 (high) 1922 (high) 42 
Sophisticated 4.05 (high) 3999 (high) 41 
Friendly 4.32 (high) 6590 (high) 43 
Cheerful 4.58 (high) 0 (low) 44 
Graceful 4.83 (high) 0 (low) 44 
Median 3.78 1394 Total  515 
Mean 3.87 3002 

 
Table 1 shows the prompt words and their individual properties. The 

item-level linguistic properties were obtained from the South Carolina 
Psycholinguistic Metabase (SCOPE Version 1.1) [39]. The number of 
semantic neighbors is calculated using a threshold distance that defines 
whether another word is considered a neighbor to the target word. The 
threshold is determined by the mean and standard deviation of a distribution 
of the interword distance of many randomly sampled word pairs [40, 41]. 
Imageability refers to the degree of effort involved in generating a mental 
image of a concept, ranging from 1 to 7 where lower numbers indicate words 
that are less imageable [42]. In the context of the full database, for example, 
yellow and oligarchy are words with high and low values for both properties, 
respectively, while accordion is an example with few semantic neighbors 
but high imageability. The word prompts in this study varied in imageability 
within a limited range as a minimum degree of abstractness was necessary 
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for the words to be utilized for the design task. 
In comparison to the linguistic properties, which are determined for each 

individual word, semantic similarity is calculated for prompt pairs. 
Including a range of semantic similarity values can expose how the 
differences in the contextual meanings of words might manifest themselves 
in outcomes. Fig. 3 shows the pairwise semantic similarity using the 12 
possible prompt words provided to participants. Semantic similarity can be 
defined in various ways. In this this case, semantic similarity was calculated 
using a pre-trained transformer model (all-mpnet-base-v2) which creates 
sentence embeddings through training on large amounts of text [43]. The 
sentence embeddings for “A chair that is [prompt word]” were calculated 
using the sentence transformers library in Python [44]. The semantic 
similarity was then defined using the cosine similarity between embeddings.  

Fig. 3 Pairwise semantic similarity of prompts based on sentence embeddings 

Design Outcome Characterization and Modeling Procedure 

The design outcomes were parameterized using features from the recorded 
final states and screenshots. These outcome features were linked to each 
semantic property. The outcome feature extraction and analysis methods are 
described in the following sections and summarized in Table 2. 

To properly evaluate our research questions, we first filtered our data as 
follows. Incomplete submissions (no completion code or missing data 
recorded from the interface) were removed. Then, another round of filtering 
was done to remove participants who had missing or improperly captured 
screenshots (e.g., blank images). Additionally, while most participants only 
completed a single session of the task, some completed multiple (i.e., chose 
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to create another chair that reflected the same prompt). In the latter case, 
only the participant’s first session was included in the analysis. Table 1 
shows the number of participants in each condition after pre-processing. 

Table 2 Summary of analyses 

Relationship with Semantic Richness 

Extracting Features from Design Outcomes Two features were used to 
model the relationship between the outcomes and individual word 
properties. The first is referred to as “style,” addressing the discrete 
functional/geometric differences across outcomes that were enabled by the 
task structure. “Style” was modeled as a categorical variable with four 
levels, corresponding to the four starting points available to participants 
(changes to the starting point could be made in the exploration phase). The 
reference level for this variable is Style 2 (movement, single-piece), the 
most common outcome style. The second feature is vibrance, a continuous 
variable addressing perceptual characteristics of outcomes. Vibrance is 
defined by the variance of color channels of the final design screenshot. This 
feature was extracted from the screenshots using the pliers library in Python 
[45] and standardized. Examples of these features are shown in Fig. 4. 

Connecting Design Outcomes with Dimensions of Semantic Richness 
Two separate models were developed, using the categorical and continuous 
outcome features (style and vibrance) and their interactions as predictors 
and the semantic properties as outcomes. Though original individual ratings 
were conducted on an ordinal scale, imageability is modeled using a linear 
model because the values were reported as norms. The number of semantic 
neighbors is modeled as count data, using a negative binomial model due to 
over-dispersion, with zero-inflation. Including zero-inflation entails  

 Input 
Variables 

Output Variable Model 

Ri
ch

ne
ss

 Style, Vibrance Imageability Numeric Linear  

Style, Vibrance # of Semantic 
Neighbors 

Numeric 
(count) 

Zero-inflated 
Negative Binomial 

Si
m

ila
rit

y 

Image Features 
from ViT 

Classification 
Accuracy 

Numeric 
(proportion) 

Support Vector 
Machine (SVM) 

Correlation Variables 
 Semantic 

Similarity 
Classification 

Accuracy 
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Fig. 4 Example of style and vibrance features from participants’ designs 

modeling excess zero counts with a logit model and the remaining zero 
counts with a count model. Here, several different words have zero semantic 
neighbors, a possible excess because of the threshold at which the neighbors 
were determined. Thus, zero counts of semantic neighbors may be generated 
by different processes [46]. The models were implemented using R and the 
pscl library [47]  and are reported with no mathematical corrections. 

Relationship with Semantic Similarity 

Extracting Features from Design Outcomes Participants’ outcome 
screenshots were used directly to understand the relationship between the 
outcomes and the semantic similarity between pairs of words. Image 
features were extracted from the screenshots using the Vision Transformer 
(ViT) used in the CLIP model [48]. The features were extracted using the 
sentence transformers library in Python (clip-ViT-B-32). 

Connecting Design Outcomes with Semantic Similarity A Support 
Vector Machine (SVM) classifier was trained using the extracted image 
features after standardization in a one vs. one scheme for each pair of word 
prompts (83 – 88 data points per classifier). An SVM finds a hyperplane that 
best separates the classes in the data. For each SVM, 75% of the data was 
used for training and 25% was used for testing, with stratification of the two 
classes. A grid search cross-validation was used on the training data to set 
the SVM hyperparameters (kernel, C, gamma) in each case. The models 
were implemented using the scikit-learn library in Python [49]. Then, a 
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correlation was used to investigate the relationships between semantic 
similarity and classification accuracy, which represents the ease of 
distinguishing the outcome images that resulted from pairs of prompt words.   

Results 

The relationship between outcomes and semantic richness dimensions 

Imageability Model The results of the model predicting imageability are 
shown in Table 4 and visualized in Fig. 6. At mean vibrance, each alternate 
style type is a significant (alpha level of 0.05) predictor of imageability 
compared to the most selected style, Style 2 (movement, single-piece). Style 
3 (movement, multi-piece) demonstrates a positive relationship with 
imageability, indicating that participants more likely selected this style in 
response to prompts with higher imageability. On the other hand, Styles 0 
(static, multi-piece) and 1 (static, single-piece) have a negative relationship 
with imageability, indicating that participants more likely selected these 
styles given less imageable prompts. There is no evidence that vibrance in 
the outcome images or interactions with vibrance are predictors of 
imageability. Overall, participants often designed chairs more similar to a 
“prototypical” chair – Styles 0 and 1 (both static) – when faced with less 
imageable prompts (e.g., dependable), moving away from these when 
imageability was higher (e.g., cheerful). 

Fig. 6  Marginal effects plots for imageability model. Each style, compared to the 
reference Style 2, predicts imageability at mean vibrance (0). There is no evidence 
for the interaction between style and vibrance predicting prompt imageability. 

Movement, 
single-piece 

Static,   
multi-piece 

Static,  
single-piece 

Movement, 
multi-piece 
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Table 4 Parameter estimates relating outcome features and prompt imageability 

Semantic Neighbors Model The results of the model predicting the number 
of semantic neighbors are shown in Table 5 and visualized in Fig. 7. Style 1 
(static, single-piece) is a statistically significant predictor for the count 

Fig. 7 Marginal effects plots for the semantic neighbors count model. Style 1, 
compared to the reference Style 2, predicts the number of semantic neighbors at 
mean vibrance (0).   

 Imageability 
Predictors Estimates p 
Intercept 3.91  

(3.84 – 3.97) 
<0.001*** 

Style [2] Reference 
Style [0] -0.17  

(-0.31 – -0.04)  
0.011* 

Style [1] -0.16  
(-0.28 – -0.04) 

0.007** 

Style [3] 0.13  
(0.02 – 0.24) 

0.027* 

Vibrance 0.01  
(-0.04 – 0.07) 

0.612 

Style [0] × Vibrance 0.10  
(-0.08 – 0.28) 

0.288 

Style [1] × Vibrance -0.03  
(-0.16 – 0.11) 

0.687 

Style [3] × Vibrance 0.10  
(-0.02 – 0.22) 

0.114 

Observations 
R2 

515 
0.064        *p ≤ .05, ** p ≤ .01, *** p ≤ .001 

Movement, 
single-piece 

Static,   
multi-piece 

Static,  
single-piece 

Movement, 
multi-piece 
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portion of the model, indicating that at a mean vibrance, Style 1 outcomes 
tend to be associated with words with fewer semantic neighbors than Style 
2 (movement, single-piece) outcomes. The intercept shows a positive effect 
of the reference Style 2 (movement, single-piece) on the number of semantic 
neighbors. The zero-inflated portion of the model distinguishes the 
prediction of zero vs. non-zero semantic neighbors. A Style 2 (movement, 
single-piece) outcome at mean vibrance (represented by the intercept) thus 
has a negative effect on predicting a word with zero semantic neighbors 
(dependable, sleek, cheerful, graceful). Unlike imageability, which is 
related to each different style, prediction of semantic neighbor count appears 
to influenced primarily by two styles, which differ in “function” (there are 
also visual differences due to this functional change).   

Table 5 Zero-inflated negative binomial model parameter estimates relating 
outcome features and number of semantic neighbors  

Semantic richness does not fully account for outcome variation 

Although imageability and the number of semantic neighbors explore 
different facets of semantic richness, word meaning is defined by the 
interaction between these properties and others. Fig. 8 shows outcome styles 

 Number of Semantic Neighbors 
 Count Zero-Inflation 
Predictors Estimates p Estimates p 
Intercept 8.53 

(8.36 – 8.70) 
<0.001*** -0.80 

(-1.07 – -0.53) 
<0.001*** 

Style [2] Reference 
Style [0] -0.29  

(-0.65 – 0.08)  
0.120 0.20 

(-0.43 – 0.82) 
0.541 

Style [1] -0.40  
(-0.73 – -0.07) 

0.019* 0.21 
(-0.31 – 0.71) 

0.425 

Style [3] -0.13  
(-0.45 – 0.19) 

0.421 0.16 
(-0.34 – 0.66) 

0.526 

Vibrance 0.02  
(-0.12 – 0.15) 

0.818 -0.16 
(-0.42 – 0.11) 

0.252 

Style [0] × 
Vibrance 

0.09  
(-0.32 – 0.50) 

0.659 -0.31 
(-1.34 – 0.71) 

0.548 

Style [1] × 
Vibrance 

-0.37  
(-0.77 – 0.02) 

0.065 -0.10 
(-0.77 – 0.56) 

0.767 

Style [3] × 
Vibrance 

-0.07  
(-0.46 – 0.31) 

0.716 0.32 
(-0.20 – 0.84) 

0.231 

Observations 515                                         *p ≤ .05, ** p ≤ .01, *** p ≤ .001 
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and vibrances across both imageability and the number of semantic 
neighbors by coarsely grouping them above and below median values. 
Distinct words, even considering the interaction between dimensions, elicit 
the generation of a large variety of outcome designs despite the style-related 
trends observed in our study. For example, the image vibrance range is often 
large for high imageability words, but this is not consistent across words 
within the same group. Therefore, the outcome vibrance may distinguish 
specific words, but not types of words. Similarly, for some words (e.g., 
graceful), outcomes are spread evenly across all style categories, while for 
others (e.g., friendly), a single style appears to dominate. Therefore, it is 
evident that factors that differentiate these individual words beyond 
semantic richness may impact design outcomes. 

Fig. 8 Features grouped by properties below (low) or above (high) the median value. 

The relationship between semantic similarity and outcome 
distinctiveness  

Semantic similarity differentiates the meaning of words in comparison to 
each other, therefore providing a more holistic picture of the impact of 
design prompts on outcomes. Fig. 9 shows the relationship between the 
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pairwise semantic similarity of prompts and the ability for the paired 
outcome images to be separated using the SVM classifier (represented by 
accuracy). Semantic similarity, at least as defined using the sentence 
embedding method, is correlated with the classification accuracy (rp =-0.31, 
p = 0.011). The correlation is negative, implying that as the semantic 
similarity of the word prompts increases, it is more difficult to distinguish 
which human-generated outcomes resulted from which prompt. This result 
demonstrates preliminary evidence that the contextual relationship of 
abstract words to each other is reflected in design output, with word prompts 
with similar meanings more likely to result in similar designs and vice versa.  

Fig. 9 Prompt similarity is correlated with classifier accuracy (rp=-0.31, p = 0.011). 

Discussion  

Semantic information plays a role in various design activities, from 
communication to inspiration, and is becoming increasingly important as the 
interface between humans and creativity-augmenting computational tools. 
This study leverages a novel task to resolve how the semantic properties of 
design prompts relate to outcomes. We find preliminary evidence that 
characteristics of the prompt can meaningfully impact outcomes. 

Types of design outcomes can predict semantic richness dimensions 

We found that some classes of design outcomes were relevant for predicting 
imageability or the number of semantic neighbors, the dimensions of 
semantic richness considered in our study. High semantic richness has 
previously been associated with lower creative quality, but better creative 
fluency [4]. However, this relationship may not be applicable in the context 
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of figural creativity [26]. In our study, high imageability words were 
positively associated with styles that varied from a static chair with four legs 
(what we refer to as a “prototypical” design). Similarly, lower numbers of 
semantic neighbors – particularly zero – were negatively associated with 
styles that varied from a “prototypical” design (though in general, the 
number of semantic neighbors could not be easily predicted). Thus, during 
visual creation, a lack of associations with other words (low semantic 
richness) could prevent people from considering more unusual forms. 
Additionally, a study of keyword-driven sketches theorized that designers 
decompose difficult-to-visualize words into associated words that are more 
easily related to images [14]. Feature data considering the interaction of the 
two semantic richness dimensions shows that Style 2 (movement, single-
piece) was a common outcome type in response to words with low 
imageability, but with a high number of semantic neighbors. Therefore, it is 
possible that in the face of particularly hard-to-visualize words, greater 
semantic richness can help lead people down paths away from the image of 
a conventional chair. Neither imageability nor the number of semantic 
neighbors showed a consistent relationship with vibrance, the perceptual 
characteristic outcomes, though variation in vibrance was inconsistent 
across prompt words, which merits further consideration. 

Increasingly similar word prompts are associated with harder-to-
distinguish design outcomes  

We found that semantic similarity is correlated with how accurately a 
classifier can separate the design images. Increasing semantic similarity 
relates to worse classifier accuracy, likely induced by decreasing divergence 
in perceptual features of the outcome images. This result demonstrates that, 
in addition to linguistic properties, the meaning and relationship between 
prompts can be leveraged to incite varying outcomes, even when they are 
presented independently of each other. Additional analysis could investigate 
if semantically similar and dissimilar word prompts can also be 
distinguished by features like outcome style or vibrance.  

Implications for Design and Future Directions 

The results shed light on how types of abstract word prompts might elicit 
subtle but predictable differences for the same object (e.g., a chair). Yet, 
even different word prompts, if they are similar in meaning, can result in 
converging outputs. Collectively, these findings have implications for 
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aligning human intentions with computational systems controlled by natural 
language, such as text-to-image systems, particularly for design tasks. Some 
types of words (e.g., confident or dependable), words with a low number of 
semantic neighbors, might easily result in expected or desired outcomes due 
to common understanding of how the words “look.” However, diverse 
outputs may be expected when specifying a semantically dissimilar modifier 
for the same object. Further investigation into how outcomes from the 
human-led text-to-3D process compare to outputs from multi-modal 
generative models (and whether the outcome diversity is adequate) is 
warranted. With the rise of language-based interfaces for generating visual 
outputs, carefully examining how input language and expected outputs 
might differ for a general-purpose use compared to a creative context, if at 
all, is critical for allowing them to be used in designer workflows.  

Limitations 

The study has some limitations that should be noted. Participants were not 
given full freedom over chair geometry and had to use our specified decision 
making structure and interface, which does not reflect the open-endness of 
real design processes. This was purposeful to accommodate non-experts and 
to understand the impact of semantic prompts in a controlled way. However, 
due to the nature of the study (online with recruitment from a crowdsourcing 
website), some participants’ decisions may have been impacted by the 
interface and motivation in ways that were difficult to capture (e.g., 
minimizing actions taken to finish the task or selecting arbitrarily). Given 
more freedom and perhaps different motivations for completing the task, 
experienced designers may demonstrate greater variation in response to the 
prompts. More broadly, design attributes likely also vary based on the use 
context and the designer’s cultural background [32]. In this study, we did 
not indicate a specific context and only English-language words were 
considered. Using our paradigm while considering different languages 
might provide further insights into cultural influences on design outcomes.   

Conclusion  

In this study, we investigated the impact of abstract word prompts and their 
psycholinguistic properties on outcomes from a creative design task. During 
the task, participants were given a set of functional, geometric, and aesthetic 
choices to create a chair that reflected an abstract word.  The results indicate 
that outcome types are sometimes predictive of prompt word types.  Certain 
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outcome styles tended to predict higher and lower imageability ratings, as 
well as lower numbers of semantic neighbors. Individual words were also 
associated with common styles and/or vibrance. Finally, there was evidence 
that semantic similarity of abstract prompts was related to similarity of 
resulting visual outputs, with similar word prompts resulting in outcomes 
that were harder to tell apart. Further research into the translation between 
abstract language and visual design artifacts can help 1) inform the types of 
guiding words that may elicit more or less diverse design outcomes and 2) 
ensure that language-controlled generative AI tools for supporting design 
activities provide sufficiently diverse or similar outcomes as needed. 
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