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ABSTRACT
Abstract semantic attributes of designs (e.g., comfortable, luxurious, durable) play a significant role in the

assessment of user-facing products, capturing intangible factors that people may consider aside from perfor-
mance requirements. However, due to the difficulty of mapping highly subjective and varying perceptions to
specific design features, it remains a challenge to quickly and accurately translate these qualities into designs
using computational design tools. Seeking to align computational and human representations of subjective
design information, we investigate the utility of adapting representations of semantic attributes to designers’
perceptions through interactive models. A study is conducted in which users evaluate parameterized drinking
mugs, indicating their perceptions of how comfortable each is to hold. Interactive Bayesian optimization is
used to adaptively arrive at a design that optimizes this subjective quantity for each participant individually.
Participants (N = 31) guide the model by providing their own decisions or building off of empirical data
from a prior group of participants (N = 25). The resulting designs are evaluated across different scenarios,
demonstrating the extent to which outputs of non-interactive models can be used to represent a subjective,
semantic attribute and how interactive models may improve perceived alignment between human intent and
computionally-generated outputs.

1 INTRODUCTION
Successful design often involves creating products or systems that, in addition to satisfying functional require-

ments, are desirable in their perceptions or ability to evoke emotional response [1, 2, 3]. In the words of Krippendorff
and Butter, “To design artifacts for use by others is to design them to be or to have the chance to become meaningful
to these others” [4]. Thus, designers have the challenging task of translating high-level, meaningful concepts into low-
level features (e.g., geometry), providing value that goes beyond function. Representing abstract semantic information
within designs is challenging due to its highly subjective nature. Designers must balance factors such as expressing
attributes desired by consumers while also preserving brand recognition or styling [5, 6]. Culture and context can
also impact how designers embed visual qualities into a consumer-facing design to align with consumers’ expecta-
tions [7]. Therefore, automated methods for this type of semantic-to-visual translation must be able to account for
such variability in designers’ perceptions, enabling them to effectively fulfill their design intent, often in an iterative
manner.

The task of embedding subjective qualities within a design (i.e., mapping abstract semantic information to design
parameters) has often been left to a designer’s intuition or achieved through methods such as conjoint analysis, where
the value of different product features are elicited from participant groups and analyzed. These methods have been
used to quantify subjective information for design, often preferences over a product’s form or functional attributes,
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by collecting and aggregating data from consumers (e.g., through pairwise decisions or ratings) and subsequently
developing preference models [8, 9, 10, 11, 12, 13, 14]. Conjoint analysis ensures outcomes that are specific to the
domain and attributes of interest, but is not suited to numerous attribute levels (which is a characteristic of continuous
geometries) or incorporating many interaction effects [15]. Furthermore, its use may be deferred to later stages of the
design process, such as to focus on marketing and pricing after design has been finalized, because the approach is data
and time-intensive [16].

The emergence of powerful AI-driven text-to-image models has further brought the challenge of accurately trans-
lating between semantic to visual representations to the forefront, as these models can increasingly be used to support
design activities [17, 18]. These models enable the generation of common artifacts using semantic expression di-
rectly [19, 20]. However, the models may not be trained on data from specific design domains and often require
concrete, rather than abstract, semantic specification to produce desired outputs [21]. A complementary approach
can address these challenges by leveraging interactive, human-in-the-loop methods (i.e., methods where an individual
can guide the outcome generation process) rather than relying solely on static data or pre-trained models. Interactive,
human-in-the-loop models have been developed to collect preference-related data in contexts like product marketing
and user personalization [22, 23]. While the prior studies have focused on visually-grounded (e.g., color, material,
form) or physically-assessed attributes, this study focuses on learning perceptions of more intangible abstract quali-
ties, which can vary across individuals, in real time. This research therefore evaluates the usefulness of interactive
preference learning to enable flexible expression of these types of abstract semantic attributes within design outcomes,
based on the alignment of the outcomes with individuals’ perceptions and characterization of how users explore and
evaluate the design space. Specifically,

1. To what extent do interactive models guided by iterative user feedback improve alignment with individuals’ per-
ceptions compared to non-interactive models?

2. How does prior data affect the efficiency and outcome quality of interactive optimization for individual users?
3. What behavioral patterns and interaction strategies (e.g., design space exploration and decision-making) emerge

during interactive optimization, and how do they shape satisfaction with the final designs?

To investigate these questions, a human subjects study was conducted where participants were able to adapt a
generic design (a parameterized drinking mug) to individually express an abstract semantic attribute (comfortable
to hold). Alignment between human perceptions and computationally optimized results from Bayesian preference
learning was empirically evaluated. The study results in (1) an evaluation of outcomes (with respect to an abstract
semantic attribute) from preference learning models where users exert varying amounts of influence through prior
data and/or interactivity and (2) a characterization of decision making during the optimization process to understand
designers’ use of the interactive method.

The primary contribution of this work is new empirical and methodological insight into the viability and utility of
interactive Bayesian optimization (BO) in the domain of human-centered design, specifically with subjective and em-
bodied criteria. The user interaction protocol and empirical findings extend the application of BO in non-trivial ways,
especially given the difficulty of expressing and modeling subjective criteria in physical product design. While prior
applications of preference learning have largely focused on arbitrary or highly individualized preferences, our find-
ings highlight the importance of capturing both shared perceptual structures and individual variation when navigating
complex, subjective design goals. Consequently, this research offers user-centric insights into the benefits and costs of
embedding computational design methods with interactivity to achieve subjective design goals that are challenging to
formalize or quantify.

2 RELATED WORK
2.1 Mapping Subjective Attributes to Designs

There have been many efforts to quantify the perceptual space of user needs (“product semantics”) to translate into
designs. Within computer graphics, several approaches have been taken to map subjective semantics to 3D geometries.
For example, geometric elements that preserve stylistic similarity between 3D shapes have been used for transferring
styles to functionally compatible shapes [24]. Another approach has used crowdsourced pairwise comparisons to
map subjective attributes (e.g. comfortable, sporty, etc.) directly to geometry using continuous deformation shape
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editing [25]. Kansei engineering is a popular approach to extracting the desired emotion from a product [26]. Rating-
based semantic differentials, such as those used in Kansei engineering, are one way to quantify subjective attributes
and related preference. For instance, Reid et al. use ratings to quantify and generate new designs that better reflect
a specific semantic attribute, perceived environmental friendliness [27]. Our work also uses a singular subjective
attribute, perceived comfort, as an example. However, as ratings (or methods such as ranking or clustering) can require
higher effort [28], we use pairwise decisions, as in [25]. Another approach to capturing product semantics has been to
utilize multidimensional scaling to build similarity-based perceptual embedding spaces and relate this space to vectors
of various semantic attributes [8,29,30]. Prior work has also used perceptual embedding spaces for difficult-to-capture
quantities [31, 32]. However, a challenge is that these perceptual embeddings do not capture individual differences
in how people make their judgments, which has been found to impact the construction of quantitative psychological
spaces [33]. At the same time, a simulated experiment shows that when crowd-level preferences form, heuristics from
the crowd information can increase the efficiency of eliciting preferences [34]. Therefore, an important consideration
for addressing these attributes is the balance of aggregation and individualization. We address this balance in our study
by considering the impact of combining iterative feedback and prior data vs. relying fully on individual feedback.

2.2 Capturing Subjective Evaluations through Offline Preference Modeling
In this work, “preference” is captured along a specific subjective dimension rather than more broadly. However,

preference modeling has more generally been applied extensively to engineering design. Early work in using prefer-
ence modeling techniques for product design uses a lottery question-based framework to create utility functions that
reflect a designer’s priorities [35]. Utility functions numerically represent, broadly, how a person values a given op-
tion. Though the use of utility analysis has its limitations in engineering design, a major benefit is its ability to “model
subjective tradeoffs, particularly those that are nonlinear and/or that must be made under uncertainty,” which can be
of particular use for adapting to individuals [36].

A common method to model preference is to determine the expected form of a utility function and then estimate
weights via a discrete choice experiment, where participants make decisions between a number of choices (often
pairwise). In many studies of preference, the choices to be presented to participants are determined ahead of time based
on methods such as random sampling, D-efficiency, or Latin square design among others [15, 12, 13, 27]. Approaches
have been developed to incorporate form (generally, aesthetics) into these utility functions [9, 14, 37], with preference
models used to analyze tradeoffs between function and form [38,10,13]. The methods used in the above studies allow
the analysis of attribute weightings to determine their impacts separately, but the presence of interaction effects can be
a challenge [15].

Prior work has also considered methods that can more flexibly capture nonlinearities inherent to subjective eval-
uation. For example, support vector machines, Markov chains, genetic algorithms, or artificial neural networks have
been used to non-parametrically map subjective attributes to design variables [11, 39, 40, 41]. Additionally, research
has successfully demonstrated feature learning for predicting preferred designs [42]. Feature learning is a promis-
ing approach to quantifying subjective semantic attributes at an individual level, but requires the collection of large
amounts of data (e.g., social media sentiments or user demographics) for offline training [43, 42, 44]. Furthermore,
these approaches are often more useful when eliciting insights from consumers, after a clear design direction has been
established, rather than during design generation. Like many of the approaches mentioned, the preference learning
method applied in our study accounts for potential nonlinearities and interaction effects. However, it additionally
allows for real-time interactions (though it does not require it), allowing a comparison of how the interactions impact
alignment with perceptions of abstract semantic attributes.

2.3 Interactive Optimization and Active Learning
Interactive and personalized approaches have potential for improving how subjective qualities can be expressed in

design. Focusing on the product semantic of “elegance,” Poirson et al. use interactive evolutionary computing (IEC) to
move towards incorporating individualized perceptions [40]. While interactive evolutionary computing can be used to
find outcomes optimized for the subjective attribute, it can be helpful to learn a function that represents the perception
of the attribute, like a reward function in human-robot interaction [45]. Such a function can then be utilized for further
decisions the individual makes, such as optimizing that attribute for a different design with the same high-level features
or considering tradeoffs with other subjective attributes, via reinforcement learning.
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An alternative method to IEC that has become popular for its flexibility and viability with smaller amounts of
data is Bayesian optimization. Bayesian optimization (closely related to Kriging models from geostatistics [46]) is a
method that allows a blackbox function to be optimized. Bayesian optimization methods have been explored in many
domains, including visual parametric design, to tackle target-oriented cases when high-level feedback is easier to pro-
vide than tweaking parameters [47,48,49]. Using Bayesian optimization for individual users is particularly promising,
for example, in the case of assistive technology such as exoskeleton gaits or hearing aids [50, 51]. Within engineering
design, Bayesian optimization has been used in cases when high-fidelity simulations are computationally expensive to
run or when feasibility constraints have to be specified based on domain knowledge [52, 53, 54]. Bayesian optimiza-
tion can reach an optimal outcome much like interactive evolutionary computing, but it does so through a surrogate
function that approximates the hard-to-evaluate, unknown function [55,56]. Surrogate functions are particularly useful
for the evaluation of subjective attributes since it is difficult to assume a functional form that will be appropriate for
a person’s judgments. Specifically, using Gaussian processes (GPs) allows non-parametric estimation of a person’s
utility function (for example, in Fig. 5), where the form of the function does not have to be specified ahead of time
but smoother functions are preferred [55]. Using GPs and their associated uncertainty quantification with active learn-
ing can address some of the challenges associated with design of experiments and individual differences. Gaussian
Process-based models offer significant advantages over traditional conjoint analysis preference models by providing
a more flexible, non-linear representation of subjective preferences, capturing complex interactions between design
attributes and continuous geometries.

Active querying has been used for preference elicitation in engineering design, allowing quick convergence to a
true utility function for a multi-objective problem [57]. Active preference learning has also been applied to finding
the best product concepts when systematically assigning weights to product attributes is difficult, finding rankings for
concepts that align with what an experienced designer selects manually [58]. Active learning has also been applied
to quantify form [56] and form and function tradeoffs [22]. Although active learning is a challenge itself due to the
high dimensionality of design spaces, this study uses Bayesian optimization and active learning in order to allow
efficient and adaptive data collection with as few evaluations of the quantity of interest as possible. We build on prior
approaches to implement an interactive optimization process based on pairwise decisions and active guidance, using it
to investigate if and how interactive models might be used to better align designers’ perceptions of subjective attributes
with computational representations.

3 METHODS
Actively-generated pairwise queries were used to find designs that optimize a subjective attribute. These outcomes

were evaluated and compared across models with varying amounts of prior data and interactivity. The study procedure
and interactive optimization method are outlined in the following section.

3.1 Design Example
The chosen design example was a drinking mug, while the subjective attribute of interest was how comfortable

the mug was to hold. The subjective dimension of “comfortable-to-hold” (vs. an even more abstract consideration like
“elegance” found in [40]) was used because, though “comfortable” is abstract, there are known aspects of the design,
related to variations in how the mug can be held, that are more likely to be associated with perceptions. This allows
the high-dimensional design space to be narrowed to include fewer, but relevant, features, allowing for faster real-time
computation. We acknowledge that “comfortable” as an attribute is not strictly based on visual perception, yet humans
commonly must judge this quality using vision (e.g., in e-commerce) when the real object is unavailable. Since a mug
is a simple, everyday object that most participants have picked up and used, it was assumed that decisions based on
visual information were sufficient for the purpose of this study. The 3D representation of the mug (shown in Fig. 1)
consisted of a cup with a fixed height, thickness, and bottom radius and a fixed thickness handle created from a Bezier
curve with three control points. The mug had five variable parameters: the taper of the cup (cup angle), the distance
between the first and last handle control points along the cup surface (handle length), the location of the center of first
and last control points along the cup surface (handle location), and the x (handle width) and y (handle angle) positions
of the middle control point. Bayesian optimization methods applied in a design or engineering design context have
primarily been applied to 2 to 7-dimensional design spaces [40,50,54,47]. These specific parameters were selected to
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directly map to how the mug can be held using the handle and the outside of the cup because of the necessity to limit
the dimensionality of the design space. The parameter bounds were set to extremes that were manually determined to
be perceptually reasonable for mugs that exist in reality (shown in Fig. 1b and 1c) and these bounds were used to range
normalize the design space to a five-dimensional unit hypercube. The variables were treated as continuous within the
hypercube and only discretized for query selection.

(a) Parameter types and labels

(b) Min. bound

(c) Max. bound

Fig. 1: Design space of the parameterized mug presented to participants with corresponding feature labels.

3.2 Participants
Data from 56 participants (29 women, 24 men, 3 nonbinary) were collected with approval from an Institutional

Review Board in two stages: Group A (N = 25) and Group B (N = 31). These participants were recruited from
university mailing lists that primarily consist of engineering undergraduate or graduate students (32 undergraduate, 19
graduate, 5 graduated/working) and as such, do not necessarily represent a general population, but may represent a
population that would desire to incorporate subjective attributes into design. The participants consisted of the following
backgrounds: 34 mechanical engineering, 1 product design, 1 architecture, 2 psychology, 11 other engineering or
science (biology/bioengineering, industrial/nuclear/chemical engineering, computer science, math), and 7 unspecified.

3.3 Study Procedure
The study was conducted in two stages where the first stage (Group A) was primarily used to collect a set of

human-generated comparisons to use in the second stage. Fig. 2 shows the outline of the study.

3.3.1 Conditions (varying interactivity and prior data)
Participants made decisions over two sets of 30 pairwise trials, where they were asked to select the option that they

perceived as more comfortable to hold, with the option to provide a small modification based on directional change of
parameters. At each new trial after the first, one new design was shown (based on active querying, which is outlined
later in Section 3.4) in comparison to the participant’s previously selected or modified design. The number of trials
was determined based on prior work [50], though it is possible fewer queries could be used [47, 48]. The difference
between the two sets of trials was solely the data used to initialize the model. In one condition, the model had no initial
data and was updated using only decisions that the participant provided in the moment (referred to as Baseline). In
the other condition, the model was initialized with simulation-generated or human-generated comparisons, and then
updated using the participant’s in-the-moment decisions (called Initialized). No time discounting or weighting of more
recent answers was included. The condition order (Baseline or Initialized first) was randomly determined when the
participant started the study. The third condition (called Aggregate) involved a model that was updated offline with the
simulation or human-generated comparisons, but not updated with any participant-specific data, representing a case
where participants are unable to directly interact with the model.
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Pairwise Trials (30 x 2)
each interactive condition

Validation Trials (5 x 3) 
each condition

Option 1 Option 2

Modify an option

Previously 
selected 
option

Actively 
generated 

query

Previously 
selected 

option with 
modification

Actively 
generated 

query

Move handle down

“Best” 
design 

(maximum 
posterior 
mean)

Random 
design

Final Evaluation 
all conditions

“Best” design 
(3. Aggregate 

condition)

“Best” design 
(2. Initialized 

condition)

“Best” design 
(1. Baseline 
condition)

Directly modify each model-optimized 
design to reflect true perceptions

Rate and rank model-optimized 
outcomes relative to each other

Make pairwise decisions 
between each 

model-optimized outcome 
and random outcomes

Make pairwise decisions and/or 
provide feedback to guide 

interactive optimization process

xchosenxunchosen

xchosen xt

xtxchosen + mod

Pfinal

Pfinal (initialized) Paggregate Pfinal (baseline)

Fig. 2: Study procedure followed by each participant (corresponding to Alg. 1). The pairwise trials were repeated
twice in a random order, once with a model containing only individual data and once with a model containing both
aggregated and individual data. After each set of pairwise trials, participants completed a set of validation trials, and
then a third set of validation trials for the outcome of the non-interactive model with only aggregated data. Finally,
three outcomes were compared: the result of the interactive models (1. Baseline and 2. Initialized) and the result of a
non-interactive model (3. Aggregate).

3.3.2 Evaluation
After each set of pairwise trials, during which the model was updated and queries were actively presented, par-

ticipants were asked to choose between the comfort-optimized design (Pfinal) and a random design for a set of 5
validation trials. For all validation trials, these random designs were generated based on random numbers from a
uniform distribution on the interval 0 to 1 for each normalized parameter. Participants were not explicitly aware of the
transition between model updating phase and validation phase. At the end, participants also completed 5 validation
trials for the third condition (Aggregate) where they selected between the maximum posterior mean design from the
Aggregate model (evaluated over a line L and observed data D), Paggregate, and a random design.

After all trials were completed (75 in total), participants compared the comfort-optimized designs (Pfinal for the
interactive models and Paggregate for the offline model) from each condition to each other, providing a rating and
ranking, with ties allowed. Then, they were allowed to indicate any changes they would make to each design using
sliders along each parameter. Finally, they were directed to a survey where they answered several questions about their
decision making.

3.3.3 Groups (initializing with human-generated or simulation-generated data)
Since human-generated comparisons were not available prior to collecting data from Group A, the Aggregate

and Initialized conditions (which rely on baseline aggregated data) were initialized with simulation-generated com-
parisons. In this simulation, first, two perceptually different mug designs that humans may deem “comfortable” were
manually selected. For each simulated participant, one of these two “comfortable” designs was randomly chosen as
the participant’s optimal design. The preference comparisons (i.e., the result of the simulated participant’s utility func-
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Table 1: Data used to initialize and update the models in each condition (1, 2, 3) and for each group (A, B). 1 and 2
result in varying comfort-optimized designs across participants and groups while 3 only results in varying comfort-
optimized designs across groups.

Model (Condition) Initializing Data (Group) Updating Data

1. Baseline
Interactive

(A) None
Pairwise trials

(B) None

2. Initialized
Interactive

(A) Simulated
Pairwise trials

(B) Real (from Group A Baseline)

3. Aggregate
Offline

(A) Simulated
None

(B) Real (from Group A Baseline)

3 predicted best 
outcomes each

3. Aggregate
Offline: same

across 
participants

2. Initialized
Interactive:
unique to 
participant 

1. Baseline
Interactive:
unique to 
participant

Active 
Learning

Initializing 
Data

A (N=25) ConditionB (N=31)Group

Active 
Learning

Initializing 
Data

Paggregate

Pfinal (baseline)

Pfinal (initialized)

Fig. 3: Procedure for incorporating real human data from Group A to initialize models for Group B. The preference
comparisons from the Baseline condition of Group A are combined to generate the Aggregate outcome (Paggregate)
and as the initializing data for the Initialized condition in Group B.

tion) were generated based on a minimizing the distance to that chosen design, with some amount of noise (i.e., the
simulated participants’ decisions do not always perfectly represent their utility functions, as is the case with humans).
Data from 25 participants was collected in this stage (Group A). Although a group of 25 may not be sufficient to
represent a true “crowd”, increasing the amount of initial data in the interactive models increases the computation time
per trial and therefore, investigation of crowd size is left to future consideration. The data from the Baseline condition
of Group A (pairwise decisions that were not guided by any simulated data) was used to initialize models in the second
stage with real human-generated data before online learning. Then, data from 31 additional participants was collected
using the real data (Group B). The three conditions are summarized in Table 1 and the use of data from Group A to
initialize the models for Group B is shown in Fig. 3.
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3.3.4 Interface
The custom web interface (developed using Flask and hosted on a Google Compute Engine virtual machine with

8vCPU and 16GB memory) for the pairwise trials is shown in Fig. 4. Inspired by the interface in [28], participants
could see instructions, followed by side-by-side 3D representations of the two designs being compared. Each 3D
representation was dynamically rendered (using OpenJSCAD and three.js) during the data collection, similar to [22],
and could be rotated and viewed from any angle if desired. There were two buttons to select either option and a
third button to provide a design modification. The third button revealed 12 higher-level options for this feedback
(corresponding to increases or decreases in parameter values), shown in Fig. 4. Before the pairwise trials, participants
had the opportunity to explore the design space to better understand the meaning behind these feedback options. After
the pairwise trials, participants conducted a simultaneous rating/ranking and sequentially, in a random order, indicated
any modifications they would make to the optimal designs. Finally, participants were directed to a survey to answer
several questions about themselves and their decisions.

Fig. 4: Participants made pairwise choices using the interface above. If neither design was perceived as more com-
fortable to hold, a third button revealed choices to suggest a modification to one design. Instructions, including how
to suggest the modification and the task (“Select the one you perceive as more comfortable to hold”), were presented
at the top of the screen throughout the study.

3.4 Interactive Optimization
3.4.1 Gaussian Process model

A Gaussian Process model is a surrogate model, specifically a multivariate Gaussian, specified by a mean function
and a covariance kernel. The GP used to model the pairwise queries in our study was specified by Chu and Ghahramani,
and has been commonly applied to preference learning tasks [59]. Using a probit likelihood, binary observations can
be used to infer a latent function (in our case, the participant’s perception of the subjective attribute related to the
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design). Based on Bayes’ theorem, the posterior probability function, which is the probability of a function (f ) given
the data (D), is

P (f |D) =
P (f)

P (D)
P (D|f). (1)

In this case, the data is in the form of pairwise preferences (D = vk ≻ uk : k = 1, ..., n) where vk ≻ uk refers to
instance vk being preferred to uk. P (D|f) is then

P (D|f) =
n∏

k=1

P (vk ≻ uk|f(vk), f(uk)). (2)

The probability in the likelihood above is 1 if f(vk) ≥ f(uk) and 0 otherwise, in the ideal case, but a more toler-
ant formulation assumes that the latent functions are contaminated with noise that follows a Gaussian distribution.
Therefore, at each pairwise decision, the model can maintain an estimate of the participants’ utility function, with
uncertainty, over a set of points. The maximum posterior mean, the point that maximizes the mean of the estimated
functions, can be used to approximate the “best” point throughout the optimization process. An implementation from
the BoTorch Python library was used (with default prior parameters) to fit the model and sample from its posterior at
each step1. The BoTorch implementation uses a Laplace approximation of the posterior and a radial basis function
kernel (also known as the squared exponential kernel) as the covariance function [60]. This kernel is commonly used
because of its flexibility when modeling smooth and continuous functions with the assumption that points close to
each other have similar values and has been used, along with its variants, in various domains including preference
learning in engineering design [55, 50, 56]. This assumption is reasonable for the given task, as sharp discontinuities
are not expected over small design variations (i.e., it is unlikely for two designs with very similar parameters to have
a drastic difference in value to the participant).

3.4.2 Active query generation
There are several options for actively determining the next query to present to users in order to efficiently model

their preference decisions. Our approach (Alg. 1) was adapted from the algorithm used by Tucker et al. [50], which
is based on Thompson sampling and one-dimensional subspaces. Similar line-search approaches have been utilized
in other domains such as visual design [47]. While other common acquisition functions (e.g., expected improvement
or upper confidence bound) were considered, this particular approach was chosen due to its tractability for balancing
exploration and exploitation at higher dimensions and variable levels, which is particularly important when considering
continuous geometry. The hyperparameter (m) for discretizing the design space was set to be as small as possible
while maintaining a reasonable evaluation time for each trial (m = 0.005, resulting in 200 possible values for each
normalized parameter from 0 to 1). Furthermore, the approach can be easily augmented by co-active feedback [23],
which provides an alternative to direct pairwise selection to improve data quality by mitigating cases when people
are unable to perceive small visual differences. This type of feedback was incorporated in our study through eliciting
design modifications based on directional change (straighter or more angled cup, taller or shorter handle, wider or
narrower handle, move handle up or down, make handle bigger or smaller), though these descriptions may be difficult
to specify in more complex cases. The modification enacted by these feedback options was a 10% increase or decrease
in the single parameter value (or two parameter values in the case of two feedback options: increasing or decrease
“handle size”). Participants were instructed to make modifications with reference to both designs (“If providing
a modification, please select it on the side of the option you prefer more”). Thus, if feedback was given, it was
incorporated as a preference over both of the designs, leading to a slightly increased impact of feedback (adding two
preference comparisons to the data instead of one). No additional weighting was included to more heavily weight
direct feedback. Bounds were included in this study for simplicity of normalizing inputs for the model. In our specific
implementation, if the feedback was out of bounds, the preference was recorded as the reverse with reference to the

1PairwiseGP from https://botorch.org/
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side that was selected. The feedback mechanism could remove the need for the design space to be bounded strictly
if alternative approaches are found for normalization. There are a couple limitations of the active querying method
implemented. First, it requires the variables to be continuous, which is not always the case for complex design spaces.
Second, there is the possibility for repeat comparisons if the model does not find a better query point along the
randomly selected line, which was not accounted for in our study.

Algorithm 1 Interactive optimization via pairwise decisions based on [50] (notation kept as similar as possible).

1: D = ∅ or Daggregate ▷ D: Preference comparison data
2: P = ∅ or Paggregate ▷ P : “Best” design based on model
3: W = ∅ or Waggregate ▷ W : Observed designs
4: Present the first comparison using random points ▷ Initialization
5: if modification feedback provided then
6: Add modification comparisons (xchosen+mod ≻ xchosen, xunchosen) to D ▷ Exceptions at bounds [0, 1]5

7: Set W = W ∪ xchosen+mod ∪ xchosen ∪ xunchosen

8: x0 = xchosen+mod

9: else
10: Add pairwise preference (xchosen ≻ xunchosen) to D
11: Set W = W ∪ xchosen ∪ xunchosen

12: x0 = xchosen

13: end if
14: if P = ∅ then
15: p1 = xchosen

0

16: else
17: p1 = P
18: end if
19: for t = 1, 2, ...n do ▷ Interactive trials
20: Lt = random line through pt, discretized via m ▷ m = 0.005
21: Vt = Lt ∪W ▷ Points to update posterior over
22: (µt,Σt) = posterior over points in Vt, given D
23: Sample utility function ft ∼ GP (µt,Σt)
24: Show new design xt = argmaxx∈Vt

ft(x)
25: if modification feedback provided then
26: Add modification comparisons between xt−1, xt, and xchosen+mod to D
27: else
28: Add pairwise preference between xt and xt−1 to D
29: end if
30: Update W with observed designs
31: Set pt+1 = argmaxx∈Vt

µt(x)
32: end for
33: Pfinal = pn+1 ▷ Optimized outcome after n trials
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4 RESULTS
The human subjects study resulted in a single “comfort-optimized” design from aggregated data (outlined in Sec-

tion 4.1), as well as several individualized “comfort-optimized” designs, produced from each participant’s interaction
with the optimization model. These interactive optimization models were provided different initial information, either
none, simulated aggregate data (N = 25), or real aggregate data (N = 31), to guide the optimization process. Outcomes
from both the interactive optimization and the non-interactive aggregate model were compared to understand if and
how computational representations of subjective attributes were aligned with participants’ perceptions. Interaction
data from Group A was analyzed in Section 4.1 and Section 4.2.1 only. Data from one participant in Group A was
removed for the analysis in Section 4.2.1 due to a data recording error during the validation trials only. Only the
interaction data from Group B (N=31) was considered in all other analysis with no participants removed.

4.1 Collecting the human-generated comparisons to construct the aggregate outcome
The first stage of the study (Group A) was used as a way to collect real data from participants that could be

used to both initialize the models in the second stage and generate, offline, the aggregate comfort-optimized design
(Paggregate). The diagonal of Fig. 5 shows the parameters of the comfort-optimized outcomes generated from each
participant’s individual data in Group A. Although the pairwise comparison data, not these final designs, were used
in the second stage, the outcomes show a tendency towards lower values for the cup angle, higher values for handle
length, and lower values for handle location. Each Group A individual’s pairwise comparison data from the Baseline
condition (not influenced by any prior data) was combined to determine the estimate of participants’ aggregated utility
function regarding comfort (with respect to the design parameters). Though this is a 5-dimensional function in reality,
it is visualized as 2D and 3D surfaces for pairwise combinations of the design parameters in Fig. 5, where the z-axis
(surface plots) and lighter color (contour plots) indicates a higher utility for that parameter combination. The overall
outcome based on this utility function, and used for the Aggregate condition in Group B is shown in Fig. 6.
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Fig. 5: Visualization of the parameters of the optimized designs from the Group A (1) Baseline condition (diagonal)
and the utility function generated from aggregating the data, used for the (2) Initialized condition and (3) Aggregate
condition in Group B

Fig. 6: Aggregate comfort-optimized design generated based on data from Group A with normalized parameter values:
[Cup Angle: 0.326, Handle Length: 0.960, Handle Width: 0.776, Handle Angle: 0.508, Handle Location: 0.547]

4.2 Evaluating the quality of and differences between model-generated outcomes
The outcomes – each participant’s unique comfort-optimized design from the two interactive models and the

aggregate comfort-optimized design for the one non-interactive model – were evaluated based on how they satisfied
the task sufficiently (via a hit rate obtained separately for each condition) and how they differed across participants
and conditions (via distance comparison).
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4.2.1 Hit rate reveals success finding perceptually aligned outcomes using interactive and non-interactive models
The hit rate refers to how often a participant selected the model-predicted comfort-optimized design vs. a random

design for the five validation comparisons. Therefore, the hit rate can help demonstrate whether a model can achieve
a comfort-optimized outcome relative to the rest of the possible design space. A generalized linear mixed model
(GLMM) was fit to evaluate the hit rate, with an outcome predicting whether the model’s optimal design was chosen
or not during the validation trials. The predictors are each condition (Aggregate, Initialized, Baseline) and group,
which specify the type of aggregate data the optimization models were initialized with (Simulated or Real), as well as
the distance between the model-optimized design and the random design that was presented at each trial.

The GLMM reveals that in the non-interactive Aggregate condition, when real data is used, the model-optimized
design is selected more than the alternate (b = 1.40, p = 0.008). This indicates that the non-interactive model is able
to successfully capture baseline perceptions of the subjective attribute. There are two significant negative predictors
for selecting the model-optimized design which show that the model-optimized design is selected less for the non-
interactive model with simulated data vs. real data (b = −1.28, p = 0.005) and in the interactive Initialized condition
seeded with simulated data compared to the non-interactive Aggregate condition seeded with real data (b = −2.08, p <
0.005). These results indicate that participants were less likely to select the optimized outcomes when interacting with
a model containing our simulated preference comparisons. The Baseline condition is not a significant predictor (b =
−0.11, p = 0.770) of selecting the model-optimized outcome compared to the non-interactive Aggregate condition
(i.e., no sign of participants treating outcomes from these models differently). However, the model-optimized design
is selected more in the Initialized condition (using real data and interactive) than in the Aggregate condition (using
real data but non-interactive) (b = 2.87, p < 0.001).

At the participant-level, the median hit rate, a proportion of the 5 validation trials, is 1 for all conditions in Group
B (Real). Only the minimum hit rate differs, with the lowest proportion in the Aggregate condition and the highest
proportion in the Initialized condition (Baseline: Range = [0.4, 1.0], Initialized: Range = [0.6, 1.0], Aggregate:
Range = [0.2, 1.0]). These results demonstrate that the model is able to output designs that are aligned with percep-
tions generally, with some conditions leading to even better outcomes.

Fig. 7: Visualization and examples of comfort-optimized (“best”) design outcomes from participants (8, 9, 23, 26, and
30) in Group B. Outcomes are shown for both sets of pairwise trials: the (1) Baseline condition and the (2) Initialized
condition (2) vs. the (3) Aggregate condition. The highlights in green mark if that design was rated by the participant
as the design that most aligned with their perceptions of comfort, with ties allowed.
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Table 2: GLMM modeling the selection of model-optimized designs vs. random designs for the validation trials of
each condition and group.

Selecting Model-optimized Design (vs. Random)

Predictor Log-Odds (CI) p

(Intercept) 1.40∗∗ (0.37 - 2.42) 0.008

group [real] Reference

group [sim.] -1.28∗∗ (-2.16 - -0.39) 0.005

condition [aggregate] Reference

condition [initialized] 1.16∗ (0.17 - 2.16) 0.022

condition [baseline] -0.11 (-0.87 - 0.65) 0.770

condition [initialized] * group [sim.] -2.08∗∗∗ (-3.25 - -0.92) < 0.001

condition [baseline] * group [sim.] 1.67∗∗ (0.55 - 2.79) 0.003

distance between choices 1.31∗∗ (0.32 - 2.29) 0.009

Random Effects

σ2 3.29

τ00pnum 0.91

ICC 0.22

Npnum 55

Observations 825

Marginal R2 / Conditional R2 0.232/0.399 ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

4.2.2 Outcomes from interactive models reflect individual differences in perceptions of “comfortable-to-hold”
The “comfort-optimized” designs were further analyzed to understand how the interactive model could lead to

different types of outcomes. The final outcomes that result from the two interactive conditions (1 and 2), compared
to the Aggregate outcome (3), which involves no intervention of the individual participant, are shown in Fig. 7 as
a 2D projection of the 5-dimensional design space (only for visualization). The highlighted points are those that
were ranked as most-aligned to participants’ perceptions when they were completing their final evaluation, while the
examples demonstrate the type of visual diversity found in participants’ final outcomes.

As participants were not informed that they were experiencing different conditions, with all trials presented in
the exact same way, it is expected that differences are influenced by the initialization data provided to the model or
the difference of an individual’s preference (e.g., an “extreme” vs. not) from the Aggregate outcome. The Euclidean
distance between each individual outcome and the Aggregate outcome demonstrates a measure of this difference for
both the Baseline (M = 0.67, SD = 0.21, Range = [0.19, 1.14]) and Initialized (M = 0.40, SD = 0.29, Range =
[0.08, 1.01]) conditions. As expected based on the nature of the model and the data it is provided in each condition,
the average distance from the Aggregate is higher for the Baseline condition than for the Initialized condition. There
is no evidence of a correlation between this Euclidean distance and hit rates or ratings for the outcomes of the inter-
active conditions. Thus, there is no evidence that distance from a baseline outcome (i.e., reaching outcomes that are
“far” from the aggregate-level outcome) is associated with decisions about or perceptions of interactively-optimized
outcomes. While Euclidean distance was selected for simplicity in comparing the designs in the normalized parameter
space, distances in the perceptual space, which are non-trivial to determine, may differ and therefore, could potentially
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influence the hit rate or alignment ratings.

4.2.3 Parameter-level analysis to reveal driving factors of individual differences
The optimization process modeled the outcomes considering combinations of parameters, but the designs can also

be examined at the parameter level to investigate where variations were most prevalent and whether certain features
drove individual differences. Fig. 8 shows the parameter distribution of the optimized outcomes of Group B while
Table 3 shows the standard deviations of the normalized parameters to demonstrate which parameters vary across
participants. The parameter that differs the least is handle length (SD = 0.21 and SD = 0.05) in both cases,
indicating that this feature (i.e., a longer handle) was common across the final outcomes for all participants. The
parameter with the highest standard deviation among best designs is handle location (SD = 0.36) for the Baseline
condition and handle width (SD = 0.28) for Initialized condition, demonstrating that these parameters show more
variety across participants.

Table 3: Standard deviation of each parameter across Group B participants’ best designs.

Baseline (1) Initialized (2)

Parameter SD Parameter SD

Handle Location 0.36 Handle Width 0.28

Cup Angle 0.30 Handle Location 0.22

Handle Width 0.28 Cup Angle 0.18

Handle Angle 0.23 Handle Angle 0.18

Handle Length 0.21 Handle Length 0.05
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Fig. 8: Parameters of the optimized designs for Group B in the (1) Baseline condition and (2) Initialized condition vs.
the (3) Aggregate condition, generated from real data from Group A

Self-reported rankings of how important each parameter was to the participant when making their decisions (ties
allowed) are shown in Fig. 9, including both Group A and Group B. Participants demonstrate variety in their impor-
tance rankings. The parameter that is considered the most important by a plurality of participants is handle length.
Correspondingly, the smallest standard deviation in outcomes for both conditions in Group B is the handle length,
which demonstrates a common feature across the group. The handle width is considered the second most important
by a plurality of participants in Group B. This feature also exhibits the highest standard deviation among participants’
best designs from the Initialized condition. Thus, it is possible that varying the handle width may have driven many
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of the individual differences, though again it is important to note that interaction effects can signify that the parameter
combinations should be considered holistically.
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Fig. 9: Self-reported rankings on the importance of each parameter for participants’ decision making (1 = Most
important).
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4.3 Evaluating perceptions of the optimization process
The model-generated outcomes were compared relative to each other based on self-reported alignment with per-

ceptions and compared to an outcome directly specified by participants, representing their “ground truth” perceptions.
Additionally, the optimization process was qualitatively and quantitatively assessed based on information from the
survey and how much the design space was “explored”.

4.3.1 Outcomes from an interactive optimization approach are generally best-aligned with human perceptions
Ratings of design outcomes in each condition are shown in Fig. 10 for Group B, based on participants’ answers to

how well aligned each design was to their perception of a mug that is comfortable to hold. It should be noted that the
ratings were completed by comparing each different condition directly and therefore also constitute a ranking. Ratings
are highest for the comfort-optimized design from the Initialized (1: Mdn = 5, 2: Mdn = 6, 3: Mdn = 5). There are
differences between the outcome ratings of the Baseline and Initialized conditions (Mdn = −1, Range = [−5, 2])
and Baseline and Aggregate ratings (Mdn = −1, Range = [−5, 3]), where Initialized and Aggregate tend to be
rated higher Baseline. The ratings reveal that on average, removing any initializing data and starting the optimization
process from scratch results in the worst alignment with perceptions. The difference between Initialized and Aggregate
ratings (Mdn = 1, Range = [−2, 3]) shows that Initialized also tends to be rated higher than Aggregate.

40 30 20 10 0 10 20 30 40 50 60 70 80 90
Percentage

Baseline

Initialized

Aggregate

8

4

8

4

4

15

8

19

27

15

27

31

31

19

12

42

27

Rating: how well does the design align with your perception of a mug that is comfortable to hold?
1 (Not at all) 2 3 4 5 6 7 (Extremely)

Fig. 10: Ratings for the Baseline (Mdn = 5), Initialized (Mdn = 6), and Aggregate outcomes (Mdn = 5) in Group
B.

The validation trials and the ranking provide a relative comparison of how well each optimized design aligned
with perceptions, while the rating provides an estimate of the absolute alignment with perceptions. To further inves-
tigate whether interactive models can lead to outcomes that align with “true” perceptions (at least within the scope of
the limited design space in this study), participants were enabled to specify modifications to each of the three opti-
mized designs to result in a design that would best align with their perceptions. As shown in Fig. 2, the participants
could modify each optimized design using sliders that corresponded to the five parameters considered in the study.
There was a reset button available (which reset the parameters to the optimized parameters) to ensure that partici-
pants’ modifications reflected a design that they considered to be better than the optimized design. Fig. 11 shows
a Euclidean distance between the participants’ model-optimized designs and their manually modified designs, sum-
marizing the overall changes participants decided to make to the optimized design to reflect their “true” perceptions.
While participants indicated a relatively high level of satisfaction with the model-optimized outcomes in aligning with
their perceptions, participants took the chance to modify their designs to exactly fit what they intended across all
conditions, indicating the inability for the models to fully represent participants’ perceptions. In line with the rating
results, on average, participants appeared to make larger changes to the Baseline outcome to reach their intended re-
sult (M = 0.36, SD = 0.24) compared to the Aggregate outscome (M = 0.21, SD = 0.21) and Initialized outcome
(M = 0.19, SD = 0.17). The largest changes were made in the Baseline condition (Range = [0, 1.06]), followed by
the Aggregate condition (Range = [0, 0.85]), compared to the Initalized condition (Range = [0.004, 0.59]).
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Fig. 11: The average amount of modification made to each of the model-optimized outcomes during final evaluation to
reflect “true” perceptions, summarized as the normalized distance between the parameterized designs. The individual
lines show participant-level data.

4.3.2 Exploration of the design space during interactive optimization
For each participant, the designs seen during the interactive trials (Baseline and Initialized) vary because of the

active querying. Fig. 12 shows the design space visited by participants in Group B throughout the optimization
process in the two interactive conditions (Baseline and Initialized). The generalized variance (determinant of the
covariance matrix) of all designs that were visited throughout the pairwise trials, excluding any validation trials,
provides quantitative insight into the extent the design space was explored during the optimization process. The
generalized variance for designs visited by participants in the Baseline condition (Mdn = 1.07 × 10−8) is greater
(W = 84.0, p = 0.0013) than that of the Initialized condition (Mdn = 5.34 × 10−11), using a Wilcoxon signed-
rank test. The generalized variance of participants’ final outcomes is similarly greater for the Baseline condition
(9.72 × 10−7) than for the Initialized condition (1.33 × 10−9), as visualized in Fig. 7. It is unsurprising that the
Baseline condition tends to query from a wider range of designs due to a lack of bias towards a specific area of
the design space from prior data. Overall, since the Initialized condition allows participants to start from a similar
“group-level” design, it follows that the spread of designs visited and the corresponding diversity of outcomes for this
condition is lower.

The impact of this broader exploration can be explained by looking more closely at the decisions made during the
optimization process. Specifically, the nature of the optimization process involved the presentation of a new design at
each iteration that was the model’s estimation of “most preferred,” under uncertainty. However, because each pairwise
comparison was made between a previously selected option and the new option, anchoring may impact decisions (i.e.,
whether to switch or stay). Fig. 13 shows, on average, the distance between comparisons that result in switching
to a new design vs. staying (not considering feature modification). Fig. 13 indicates that larger distances (i.e., the
new option is more different in the parameter space) tend to precede a stay by the participant. This observation is
statistically significant for both conditions, but more pronounced in the Baseline interactive condition (W = 21.0, p =
8.65 × 10−6) than the Initialized interactive condition (W = 147.0, p = 0.048). Participants may be biased towards
staying with a previously selected option particularly when new alternatives are very different from their current
design. In the Baseline condition, the lack of prior data can additionally lead to actively queried designs that are
perceptually unsuitable, particularly in earlier trials.
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Fig. 12: The parameter values visited during the optimization process by Group B in the interactive conditions. The
generalized variance of designs visited in the Baseline condition (Mdn = 1.07 × 10−8) is greater (W = 84.0, p =
0.0013) than that of the Initialized condition (Mdn = 5.34× 10−11).

4.3.3 Impressions of the interactive optimization process demonstrate benefits and challenges
Free response answers after the study reflect broad impressions of the interactive optimization process, which may

have affected satisfaction during the optimization process and subsequently satisfaction with model-optimized results.
For example, one participant notes that their preferences were reflected by the updating model in some aspects, but
that changing their mind part of the way through made it difficult for the model to capture their final intent exactly:

“Having a specific handle shape in mind made selections of Option 1 vs. 2 really easy. It was hard to see
the small changes that were made when features were controlled with the “taller handle,” etc. buttons. I feel
that I might have confused the model a little bit into making it believe that I wanted a larger handle after
I changed my mind about that 1/4th of the way through the study. For the most part, the model was pretty
spot-on with my preferences for cup angle and handle angle but kept on giving me cups with strange handle
lengths for the duration of the study.”

Additionally impressions are shown in Table 4. Positive perceptions of the optimization process appeared to result
from being able to visually identify that the active querying method was providing alternatives that were more closely
aligned with perceptions. In particular, allowing modifications to provide co-active feedback was a mechanism that
allowed participants to immediately see the impact of their decisions on future choices. Participants struggled with
being provided choices that were too visually similar, representing a potential mismatch between the data that interac-
tive models need to perform optimally compared to what humans are able to provide. At the same time, participants
also expressed confusion towards instances where they were presented with seemingly random, completely different
designs. In this study, part of this can be attributed to the validation trials that participants were unaware of. However,
this leads to important considerations regarding how interactive computational processes would have to be developed
in order to properly capture human perceptions (in this case, considering perceptual similarity). Additional factors
such as preference reversal and consistency remain a challenge that is not addressed by the interactive models utilized
here, although there have been efforts to try to incorporate preference change over time [61].
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(a) The median distance (0.44) preceding a stay is greater than
the median distance (0.29) preceding a switch (W = 21.0, p =
8.65× 10−6)
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(b) The median distance (0.54) preceding a stay is greater than
the median distance (0.49) preceding a switch (W = 147.0, p =
0.048)

Fig. 13: The average distance between comparisons that resulted in switching to a new design vs. selecting a previously
selected design again for the Baseline condition (left) and the Initialized condition (right). The individual lines show
participant-level data.

5 DISCUSSION
To allow computational methods to better align with human perception, it is important to understand how human

perception can be best embedded into optimization processes. In this work, we explore how interactive optimization
methods lead to outcomes that are well-aligned (or not) with humans’ perceptions of the subjective attribute of comfort.
We also identify how different outcomes might arise when aggregating this perception across a group of individuals.
We find that commonalities in human perception within a group can be leveraged to generate outcomes that are well-
aligned with the intended subjective attribute and that addressing subtle differences of perceptual decisions through
interactivity can be beneficial for even better alignment. However, factors related to the optimization approach, such
as queries that are too visually similar or confusion around why the model presents very dissimilar designs (e.g., to
balance exploration and exploitation), demonstrate remaining challenges of leveraging human-in-the-loop systems for
design preference elicitation.

5.1 Interactive optimization can capture human perceptions of a subjective attribute and improve satisfaction
with an optimized outcome

The first question addressed is: to what extent do interactive models guided by iterative user feedback improve
alignment with individuals’ perceptions compared to non-interactive models? The results of this study indicate that
the interactive models are able to produce outcomes that capture perceptions of the subjective attribute considered
here reasonably well, based on the tendency to select model-optimized outcomes over random outcomes (hit rate). In
particular, analysis of hit rate provides support for the benefit of interactive over non-interactive models, given real
initialization data. Furthermore, alignment of individualized outcomes with perceptions of comfort is rated relatively
highly by participants (medians of 6 and 5 out of 7 for the Initialized and Baseline conditions respectively), with the
Initialized condition tending to be rated the highest of the three conditions.

The results of Initialized condition also addresses the second question: how does prior data affect the efficiency
and outcome quality of interactive optimization for individual users? When the initialization data reflects real human
decisions, including this information helps improve upon the individualized models, which already perform relatively
well. However, when the data is simulated and does not match how humans make real decisions (e.g., prioritizing a
specific design attribute like handle length), including aggregate data can be detrimental and participants are unable to
reach an area of the design space that reflects their perceptions. This is supported by the hit rate analysis, which finds
a negative impact of initializing with simulated data on selecting the optimized outcome Therefore, interactive models
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Table 4: Examples of responses to “Briefly describe any perceptions you had about the impact of your deci-
sions/feedback on the model during the study”

Category Responses

Impressions that decisions
impacted the optimization
process positively

I did notice the modifications I was making being implemented at a certain point,
and it felt like the middle part of the study was trying to get me to a more narrow
range of designs whereas the beginning and end showed me a very big range of
designs. [P1]

Not sure. I appreciated that I was able to see physical changes in the models that
reflected my adjustment suggestions [P2]

The options slowly changed to cater to my needs, until it offered a model that was
outside of what I considered. [P3]

Other times, the model was trying to figure out a quality (like handle length) and
gave very different models until it understood my preference. [P4]

Impressions that decisions
did not impact process

I didn’t feel like my decisions were affecting the model at all. Each pair seemed
just as random as the previous. [P5]

I was confused because I couldn’t really see any of my modifications in the
reloaded cup designs. [P6]

Dissatisfaction with the
optimization process

It seemed the model would go through periods of very slight changes, then sud-
denly give a wildly different and [uncomfortable] design after I gave feedback on
what changes I want, either opposite to or overly fitting to that feedback. [P7]

Difficulty expressing pref-
erence due to visual simi-
larity

At times I felt like the two models were the same and it was hard to decide which
was better, at which point I looked at the cup angle which I felt like was less
noticeable. [P1]

Sometimes the cups looked very similar and I would get stuck in a loop of deciding
between very similar cups. [P4]

The cups started blurring together also all the designs looked so similar. [P6]

can fail if initialized with data that does not represent human perceptions well. Prior work implies through simulated
experiments that changing the initial guess based on similar users is only valuable when the optimally-preferred de-
signs are clustered [34]. Our empirical results support this based on the difference in results from initialization with
simulated vs. real data. In general, the example considered here and bias in the participant pool likely induces more
subtle individual differences in perception, whereas different examples may elicit larger differences that may lessen
the benefits of initializing with aggregate data.

Design-relevant computational approaches such as semantic shape editing rely on the creation of large aggregate
mappings of semantics to geometries [25]. Here, we find that such an approach can work well, but personalizing the
semantic mappings can capture subtle differences across individuals’ perceptions. Prior work within the design field
has successfully moved towards both crowd-based and adaptive, personalized methods in the context of inspirational
stimuli [62, 63]. In this study, the interactive models are able to lead to satisfactory outcomes with relatively few
queries. Results show that incorporating real group-level data into an interactive model (Initialized condition) can lead
to the best alignment with participants’ perceptions, as shown by both decisions and self-reported measures on average.
Table 5 shows the ranking of the “best” outcome from each model (ties allowed), obtained from the comparative
ratings. Notably, there were still participants who ranked outcomes from other conditions (Baseline and Aggregate)
the highest. In fact, 25% (8 of 31) of the participants rank the result of the Baseline condition as the most aligned with
their perception of comfortable. While not the majority, this subset could be important to considered for application
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of personalization if their perceptions diverge, as they may not be satisfied with outcomes that result from models
with a bias towards aggregate data. Highly individualized models (i.e., the Baseline condition) may be more useful
when there are highly diverging views of the dimension (e.g., for particularly abstract concepts) than in the attribute
considered here. This individualization must be balanced with the cost of collecting data from a broader group, which
is the greatest for the Initialized condition and the lowest for the Baseline condition. Furthermore, it is notable that
even the Initialized condition does not align perfectly with true perceptions, demonstrated by participants’ tendency
to modify the outcome designs when given the opportunity to do so at the end. This type of behavior supports the
need for interactive methods to computationally express abstract semantic attributes, but also indicates that improved
feedback methods are necessary to better align interactive preference learning to perceptions.

Table 5: Frequency of rankings for “best” outcomes

Model

Rank Baseline Initialized Aggregate

1 8 19 14

2 9 11 7

3 14 1 10

5.2 Model behavior and interaction with models impacts their use for embedding into human-centric appli-
cations

Analyzing the interaction process addresses the final question: what behavioral patterns and interaction strategies
(e.g., design space exploration and decision-making) emerge during interactive optimization, and how do they shape
satisfaction with the final designs? More of the design space is explored during the Baseline condition compared to
the Initialized condition, but based on the hit rates and ratings, less exploration does not have a negative impact if the
starting point is relatively aligned with human perceptions. In fact, the presentation of vastly different and seemingly
“random” designs can be detrimental, based on behavior (i.e., the tendency to stay rather than switch) and comments
about the interactive optimization process. It appears that the benefit of the Initialized condition is its ability to reach a
general consensus of a comfortable mug and then allow adaptation to more subtle user preferences. This adaptation is
likely enabled by guidance towards parameters that are more important from prior data, which is unavailable when the
model starts from scratch in the Baseline condition. In a study comparing human and optimizer-led design, Chan et
al. find that though performance-related outcomes can be improved, people lose agency and ownership when they are
being guided by an optimizer [64]. Some of this can be mitigated by allowing people to provide co-active feedback,
like in the form of design modifications here. People may have been more satisfied with outcomes because they
had the option for active guidance rather than only passive evaluation. People may also feel frustrated if they do
not understand Bayesian optimization, which trades off exploration and exploitation [64]. Thus, it may appear the
optimizer is giving worse examples when it is simply trying to gain more information. Prior work also notes that
human steering can impact optimization if information about how the optimization process works is provided [65].
Open-ended comments from the survey in our study indicate that some participants felt like they could see the impact
of their decisions and feedback throughout the optimization process, while others felt frustrated if they felt like their
decisions did not make a difference or if the differences were not visually perceivable. It is possible that if participants
were able to understand the impact of their actions on the optimization process, or receive training [66], they would
reach better outcomes. Providing more transparency around what the optimizer is doing in the moment could mitigate
some of the negative aspects observed in this study. Considering these factors is critical to improve computational
representations of hard-to-quantify qualities relevant for design.
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5.3 Preference-based interactive optimization for capturing semantic attributes can complement text-to-image
and text-to-3D models

The results of the study, although applied to only a single semantic attribute, reinforce that it is possible to
reflect subjective qualities into visual outputs using aggregate mappings to a certain extent. Large-scale mappings of
semantic and visual information [19] enable the rapid generation of outputs via text input (e.g., “a comfortable mug
with a large handle”) while, in the context of design, efforts have been taken to guide generative models to better align
with subjective evaluations [67, 68, 69]. These approaches can facilitate design space exploration without the need to
manually visualize and search through alternatives. However, is may be difficult to reflect subtle individual differences
in perceptions of subjective attributes into visual artifacts using current text-to-image or 3D generation models, as
current interactions generally need the users to adapt to the model (e.g., wording their prompts correctly and with
enough detail) rather than the model adapting to the individual users. Results from this study indicate that interactivity,
compared to outputs from a pre-trained model (i.e., the Aggregate condition), may help improve perception alignment
for subjective qualities. This outcome is perhaps because of the ability of interactive models to support human decision
making agency (e.g., through guidance or feedback) when computationally generating design outputs. In other words,
though non-interactive aggregate models can represent a subjective attribute to some degree, interactivity can lead to
improved perceptions. The approach taken in the study conducted here could be used in conjunction with more flexible
generative models to generate outputs that are aligned with a specific, personalized semantic attribute. Furthermore, a
blend of approaches may allow designers to build upon real data, leveraging empirical evidence from user preferences
while simultaneously maintaining the agency to influence design outcomes. Such future advances can eventually lead
to tools that enable designers to efficiently explore a vast design space while not having to sacrifice their individual
styles.

5.4 Considerations for scaling to higher dimensions
In more complex design problems, capturing the interactions between a large number design parameters is partic-

ularly critical for translating abstract semantic goals into geometry. Individuals’ perceptions may also vary to a greater
degree when there are more design parameters (or there is a more abstract subjective goal), making interactive adapta-
tion to the individual particularly important as complexity increases. At the same time, increasing the dimensionality
impacts optimization performance (the method used here has not been tested beyond six dimensions [50]), making
it difficult to implement interactive preference learning practically in these cases. With a more complex example, it
may be necessary to increase the number of evaluations per individual or initialize with greater amounts of aggregated
data to ensure that the optimization reaches the relevant areas of the design space. When scalability of the number
of dimensions becomes particularly challenging, it may be necessary to pursue dimensionality reduction techniques
and learn more concise design representations that capture the relevant features (e.g., design manifolds [70]). This
approach can likely be achieved offline and used to initialize the preference learning process, for example, for specific
product categories.

5.5 Limitations and future work
Some limitations and further work should be considered. First of all, the use of a GP allows for the estimation

of a surrogate function which can represent a subjective scale in relation to design features, but this function is more
representative of positive values (more comfortable) than negative ones (less comfortable). It should also be noted that
the approach taken here may have to be modified if the adjectives describing the semantic pair are very different (e.g.,
traditional to elegant) compared to a quantity (less or more comfortable). Furthermore, because the adaptive querying
involves sampling from the Gaussian Process and then evaluating over a line, there is a degree of randomness in what
participants were presented with as a new design (i.e., exploration), which may impact decisions, particularly given
the blackbox nature of the optimizer. Particularly with the method applied here, the granularity at which preference
is expressed cannot be changed. Preferences are expressed over combinations of all parameters (global). This is
helpful to address interaction effects, but it prevents the flexibility of specifying parameter level (local) preference.
Mechanisms to enable changes in the granularity of expression could be to selectively allow manually changes (e.g.,
through direct specification or manipulation [47]). A challenge here, however, is encoding these local preferences
properly without negatively impacting representations of global preference.

Some limitations also relate to the design representation. Most notably, using virtual (e.g., in virtual reality) prod-
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uct representations over 2D product representations (i.e., images) leads to judgments that are more aligned with judg-
ments for real products [71], but it is known that evaluations can differ between digital and physical models [72]. In
early-stage design, creating even a moderate number of physical representations to assess preference comprehensively
can be impractical. Therefore, the approach here can be used to narrow the design space down for more expensive
design representations to be evaluated downstream. Additionally, in this study, the design was parameterized into
five features that were assumed to be relatively important for the subjective attribute being considered. The surrogate
function for each participant could be used to optimize a mug of a different shape for “comfort” as long as it can be
parameterized by the features represented here (e.g. handle length, handle width). However, this is not inclusive to
many other features people may have considered that contribute to further inter-individual differences. In our case,
the adaptive querying was conducted using design features that mapped directly to low-level parameters. Participants
were allowed to provide a degree of abstract feedback, but an interesting area of future investigation would be the
incorporation of higher-level conceptual feedback without a one-to-one mapping to the low-level parameters.

6 CONCLUSION
In this work, interactive and non-interactive optimization models are utilized and evaluated for their ability to

capture and reflect differences in human perceptions of a subjective attribute. We provide insight into the ability to
capture an aggregate-level representation and show how subtle individual differences can be captured by interactive
models, resulting in different outcomes and satisfaction with these outcomes. The results show that a non-interactive
aggregate-level model can represent human perceptions, but that reflecting individuals’ decisions through an interactive
process leads to even better alignment. Thus, while people may share some commonalities in their perceptions,
individualization can be useful to generate and adapt designs at a semantic level. These systems can blend the strength
of computational models with designer expertise and intuition, allowing designers to guide the translation of abstract
semantic concepts into design features in real-time, and efficiently customize generic parametric designs to fit their
own perceptions of a quality (e.g., more sporty, more luxurious). Such approaches can be complementary to large-
scale semantic-to-visual mappings, particularly when perceptions diverge from the “group” or for design contexts not
encompassed in the existing training data for foundation models.

ACKNOWLEDGEMENTS
This work has been supported by the Regents of University of California and NSF (2145432-CAREER). The

findings represent the views of the authors and not necessarily those of the sponsors. A preliminary version of this
study was presented for ASME IDETC 2023 [73].

REFERENCES
[1] Krippendorff, Klaus and Butter, Reinhart. “Product semantics-exploring the symbolic qualities of form.” Inno-

vation Vol. 3 (1984): pp. 4–9.
[2] Demirbilek, Oya and Sener, Bahar. “Product design, semantics and emotional response.” Ergonomics Vol. 46

No. 13-14 (2003): pp. 1346–1360.
[3] Benaissa, Brahim and Kobayashi, Masakazu. “The consumers’ response to product design: a narrative review.”

Ergonomics Vol. 66 No. 6 (2023): pp. 791–820.
[4] Krippendorff, Klaus and Butter, Reinhart. “Semantics: Meanings and contexts of artifacts.” Product experience.

Elsevier (2008): pp. 353–376.
[5] Lin, David Chuan-En and Martelaro, Nikolas. “Learning Personal Style from Few Examples.” Designing Inter-

active Systems Conference 2021: p. 1566–1578. 2021. Association for Computing Machinery, New York, NY,
USA. DOI 10.1145/3461778.3462115.

[6] Burnap, Alexander, Hartley, Jeffrey, Pan, Yanxin, Gonzalez, Richard and Papalambros, Panos Y. “Balancing
design freedom and brand recognition in the evolution of automotive brand styling.” Design science Vol. 2
(2016): p. e9.

[7] Liberman-Pincu, Ela, Korn, Oliver, Grund, Jonas, van Grondelle, Elmer D. and Oron-Gilad, Tal. “Designing

24

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received November 26, 2024;
Accepted manuscript posted September 4, 2025. doi:10.1115/1.4069687
Copyright © 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/doi/10.1115/1.4069687/7535543/m
d-24-1847.pdf by U

niversity of C
alifornia Library - Berkeley user on 16 Septem

ber 2025



Socially Assistive Robots Exploring Israeli and German Designers’ Perceptions.” J. Hum.-Robot Interact. Vol. 13
No. 2 (2024). DOI 10.1145/3657646. URL https://doi.org/10.1145/3657646.

[8] Petiot, Jean-François and Yannou, Bernard. “Measuring consumer perceptions for a better comprehension, spec-
ification and assessment of product semantics.” International Journal of Industrial Ergonomics Vol. 33 No. 6
(2004): pp. 507–525.

[9] Orsborn, Seth, Cagan, Jonathan and Boatwright, Peter. “Quantifying aesthetic form preference in a utility func-
tion.” Journal of Mechanical Design Vol. 131 No. 6 (2009): p. 061001.

[10] Kelly, Jarod C, Maheut, Pierre, Petiot, Jean-François and Papalambros, Panos Y. “Incorporating user shape
preference in engineering design optimisation.” Journal of Engineering Design Vol. 22 No. 9 (2011): pp. 627–
650.

[11] Ren, Yi, Burnap, Alex and Papalambros, Panos. “Quantification of perceptual design attributes using a crowd.”
DS 75-6: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Har-
monies, Vol. 6: Design Information and Knowledge, Seoul, Korea, 19-22.08. 2013. 2013.

[12] Sylcott, Brian and Cagan, Jonathan. “Modeling aggregate choice for form and function through metaconjoint
analysis.” Journal of Mechanical Design Vol. 136 No. 12 (2014): p. 124501.

[13] Goucher-Lambert, Kosa and Cagan, Jonathan. “The impact of sustainability on consumer preference judgments
of product attributes.” Journal of Mechanical Design Vol. 137 No. 8 (2015): p. 081401.
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