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ABSTRACT
Function drives many early design considerations in prod-

uct development. Therefore, finding functionally similar exam-
ples is important when searching for sources of inspiration or
evaluating designs against existing technology. However, it is
difficult to capture what people consider to be functionally sim-
ilar and therefore, if measures that compare function directly
from the products themselves are meaningful. In this work, we
compare human evaluations of similarity to computationally de-
termined values, shedding light on how quantitative measures
align with human perceptions of functional similarity. Human
perception of functional similarity is considered at two levels of
abstraction: (1) the high-level purpose of a product, and (2) a
detailed view of how the product works. Human evaluations of
similarity are quantified by crowdsourcing 1360 triplet ratings
at each functional abstraction, and then compared to similarity
that is computed between functional models. We demonstrate
how different levels of abstraction and the fuzzy line between
what is considered “similar” and “similar enough” may impact
how these similarity measures are utilized, finding that different
measures better align with human evaluations along each dimen-
sion. The results inform how product similarity can be leveraged
by designers. Therefore, applications lie in creativity support
tools, such as those used for design-by-analogy, or future com-
putational methods in design that incorporate product function
in addition to form.

∗Address all correspondence to this author.

1 Introduction
Designers often make comparisons between different ideas

and assess how their designs will meet functional requirements to
solve the problems they face. In order to acquire knowledge and
make decisions in early-stage design, a common practice is to
seek examples of or inspiration from existing products, through
methods such as benchmarking or searching patents [1,2]. Previ-
ous work has shown that inspirational stimuli help improve idea
generation and that function-based examples are specifically use-
ful in helping designers identify potential solutions [3,4]. There-
fore, many quantitative approaches have been applied to deter-
mine functional similarity between products, guiding the devel-
opment of computational methods to augment designers’ capa-
bilities in the solution exploration phase [5–7]. However, it is
still challenging to determine how these methods align with the
way designers draw functional connections between products in
practice. Depending on the stage of the design process, designers
may consider concepts at different levels of abstraction. While
functional representations are abstractions themselves, prioriti-
zation may lie on the higher-level function of the product (i.e.
its purpose) or on the mechanisms/sub-functions necessary to
achieve this purpose (i.e. how it works) [8]. When considering
function in these different ways, products that are relevant for
benchmarking, as examples, or for inspiration, may vary, moti-
vating the need for appropriate similarity measures.

To further assess how design similarity can be measured and
utilized for the early stages of design, in this research we take
a quantitative approach to compare human conceptualization of
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similarity with how similarity can be measured mathematically,
specifically focusing on product function. We apply crowdsourc-
ing methods to quantify human-determined functional similarity
and explore how various quantitative measures align with human
understanding of functional similarity. The results lead to insight
on how measures of functional similarity can be used in engi-
neering design and where they might fall short. With our contri-
butions, we aim to ensure that computational methods to support
design are meaningful to humans.

2 Related Work
In this section, we review prior research on the use of simi-

larity measures in engineering design, as well as research on hu-
man perception of similarity and its measurement. These areas
are applicable to our work in comparing human evaluations with
computational output, ensuring that the latter is interpretable and
useful to humans during design activities.

2.1 Measuring similarity in design
Obtaining evaluations of design similarity from humans,

through expert or crowdsourced assessments, is challenging and
expensive, prompting effort towards finding quantitative similar-
ity measures for the design domain. Since design spans various
tasks and contexts, it is often practical and desirable to adapt
existing measures that have already been shown to apply across
various domains. Similarity can be assessed on different dimen-
sions, such as form or function, and at different phases, ranging
from concepts to full products [9]. For example, visual similarity
between products (similarity in form) has been investigated for
the purpose of determining product families, variants, or brand-
ing [10,11]. In the early stages of design, however, product func-
tion is often one of the most critical considerations [2]. Assess-
ing similarities along the dimension of product function poses a
challenge because product function is difficult to quantify.

One way to calculate functional similarity involves using a
text-based repository of domain relevant information such as the
patent database, which contains a large body of data on prod-
uct function. Functional similarity has been calculated using la-
tent semantic analysis and the cosine similarity measure on these
patents for the purpose of design-by-analogy (a method where
designers seek to apply solutions that work for other problems to
solve their problem) [5]. The results from using this measure has
been validated by indicating that its clustering of patents is sen-
sible to experts [12]. Another way to capture product function
is through a functional diagram or model, such as one developed
using a standardized vocabulary [2,13,14]. A vector-based quan-
titative metric has been developed to compare these functional
models [6]. In addition, critical function chains have been ex-
tracted from functional models and matched in various ways to
quantify functional similarity [7, 15]. The functional model rep-
resentation enables a higher level of abstraction of a product than
a patent, which may be desirable when searching for examples

during conceptual design. At the same time, functional mod-
els are not available for many products and are often developed
subjectively. To mitigate these challenges, recent research has
focused on automating functional modeling using information
about product components [16, 17]. However, it is also notable
that these measures each provide a different conceptualization of
what similarity means when applied to product function. Some
measures place importance on the existence (or absence) of spe-
cific sub-functions to define overall functional similarity, while
others place more importance on patterns in how sub-functions
connect to each other. These differences impact the context each
measure can be used within and indicates the necessity to care-
fully consider how functional similarity is quantified [18].

2.2 Considerations for evaluating design similarity
Several factors may influence how quantitative similarity

measures, computed directly on designs, can be effectively used
to support human creativity in engineering design. Two are con-
sidered here: first, that there is no hard line between when a prod-
uct is considered similar vs. dissimilar, and second, that ideas are
considered at varying abstraction levels during design.

The concepts of similarity, dissimilarity, and distance are of-
ten used interchangeably. Mathematically, distance measures can
be converted to dissimilarity measures. In addition, similarity
can be converted to dissimilarity, and vice versa. However, in
application, whether similarity or dissimilarity is more important
depends highly on the context. For example, in recommendation
systems broadly, while similarity is used to find the most relevant
results, the notion of dissimilarity is explored instead to add nov-
elty and diversity to results [19]. In the domain of engineering
design, dissimilarity has been applied to developing novelty met-
rics for idea assessment at the conceptual stage. To characterize
novelty, these metrics emphasize how dissimilar a given concept
is from other concepts [20].

Measures of similarity also play a critical role in attempts to
foster analogical innovation. According to Gentner and Mark-
man, the processes involved in comparisons of similarity and
analogy are the same [21]. Analogical distance has been shown
to impact the effectiveness of examples during concept genera-
tion, indicating that the distinction between similarity and dis-
similarity is critical in the practice of design-by-analogy [22,23].
Analogies are generally considered to be near-field analogs
(sharing surface features or existing in the same domain) or far-
field analogs (sharing few or no surface features and existing in
different domains, but having some functional similarity). As
such, analogical distance encompasses similarity and dissimilar-
ity as well as balancing the line between the two [24]. It would
thus be essential to understand if the suitability of a measure to
find similar designs differs from the suitability of the measure to
find dissimilar designs.

Another element to consider when assessing similarity be-
tween designs or products is the abstraction level of their repre-
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sentations. Work in the cognitive processes behind design sug-
gests that solution search is performed through lateral and verti-
cal transformation: moving to a slightly different idea or moving
to a more detailed version of the same idea [25]. In the context
of product function, as the level of detail available increases, the
functional abstraction can decrease, facilitating consideration of
function to be how the product works instead of its higher-level
purpose [26]. Functional similarity measures have focused on
lower-level representations (i.e. the working mechanism) since
very detailed information is available in patents and in full func-
tional models that have been developed through reverse engineer-
ing. However, designers often only have enough information to
operate at the higher level during the conceptual stages of design.
In addition, cross-domain analogies can be found through higher-
level purpose even if working mechanisms differ [8]. To address
that functional similarity can and should be considered at differ-
ent levels of abstraction, it is necessary to understand how any
quantitative measures reflect the ways in which humans translate
between the levels.

2.3 Quantifying how humans evaluate similarity
Humans constantly make judgements of similarity in order

to reconcile information from the world around them with inter-
nal mental representations. In addition, similarity is said to play
a part in how people structure conceptual knowledge [27]. In the
structural alignment view of similarity from psychology, there
are three elements of alignment: structural consistency, relational
focus, and systematicity. These elements correspond to one-to-
one matching, common relations in both items being compared,
and sets of relations that are interconnected by higher order re-
lations [21]. It is difficult to untangle the underlying dimensions
along which people consider similarity, which is important when
applying similarity measures within interventions or systems that
are intended to augment human processes. In order to assess how
quantitative measures align with human mental models, it is cru-
cial to capture how humans perceive similarity.

One approach to understanding why people might consider
two objects to be similar is to explicitly ask them for their reason-
ing. Another is a data-driven approach, where people are asked
to make similarity judgements and latent or explainable dimen-
sions are uncovered directly from the results. This data-driven
approach has been used in several contexts such as to deter-
mine similarity across musical artists and natural objects [27,28].
Within engineering design, both approaches have been used to
assess design similarity for a variety of purposes.

In a study on design-by-analogy, participants were explicitly
asked what dimensions they considered important for similarity
between a target and source product [29]. It was found that func-
tional similarity dominated over form similarity. To understand
whether the structural alignment view of similarity from psychol-
ogy applies in the context of design, participants were asked to
rate similarity between design concepts and explain their reason-

ing in another study [30]. The results implied that feature-based
responses drove similarity, in line with the element of structural
consistency from the structural alignment model.

More recently, the data-driven approach has been increas-
ingly applied to problems in design. Pairwise similarity judge-
ments were crowdsourced to assess visual similarity between
products, determining that novelty assessments from a crowd can
match with those made by experts [31]. Similarity judgements
were also collected in the form of triplet ratings for determining
design sketch novelty and for evaluating dissimilarity between
sets of ideas to spur diversity during idea generation [32, 33].
More granular search across specifically product function was
enabled by crowdsourcing annotations from product descriptions
and including both product purpose and working mechanism as
facets [34]. These data-driven methods are able to uncover hu-
man perceptions of similarity, but may be limited to the task or
context for which the data were collected. In addition, the dimen-
sions of similarity determined from data-driven methods may not
be explanatory or easy to interpret. Therefore, using similarity
functions that have been learned directly from humans may not
always be possible or desirable. At the same time, even a similar-
ity measure that is directly computed from products must provide
human-interpretable results in order to successfully supplement
cognitive processes such as analogical transfer.

3 Methods
In this paper, we investigate functional similarity as crowd-

sourced from humans in comparison with what is recovered us-
ing quantitative measures directly on the products. We aim to
gain insight into how example-based design tools or computa-
tional methods might capture product functionality, making this
information accessible to designers.

3.1 Product dataset
A subset of 20 consumer products (e.g. toys, consumer

electronics, household devices) found in the Design Repository
hosted by Oregon State University was utilized for this work
[35]. This subset was selected to represent products with vary-
ing levels of complexity that participants would be familiar with,
as well as to ensure the availability of two consistent levels of
functional specification. A list of the products can be found in
Appendix A. For each product, the repository contained a sim-
ple functional model consisting of inputs, outputs, and a singular,
main function of the product, as well as a highly detailed func-
tional model of how the product worked, specified according to
Hirtz et al. [14]. An example of each type of functional model
is shown in Figure 1. The repository additionally contained a
product title and image.

3.2 Crowdsourcing human judgements
To capture how humans consider products to be functionally

similar, similarity judgements were crowdsourced from humans
and then represented in a two-dimensional embedding space us-
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FIGURE 1: Functional models at two levels of abstraction
(shown for a scooter)

ing techniques from machine learning. These embeddings were
used to quantify the relative similarity among the set of prod-
ucts. This method has recently been used in engineering design
to determine the visual similarity of products as well as to de-
termine the novelty of ideas [31, 32]. The judgements were col-
lected in the form of triplet queries (“Is A more similar to B or
to C?”). Prior work has shown that humans are more easily and
consistently able to answer triplets as opposed to direct pairwise
comparisons [36].

Because functional similarity may depend on the level of ab-
straction at which someone is considering products, information
about function was presented to participants in two ways based
on the two available types of functional models. The informa-
tion from the full functional models (lower image in Figure 1)
was converted to text descriptions to capture essential informa-
tion about how the product worked. The function as defined by
its purpose was taken directly as text from the simple functional
model (upper image in Figure 1) and only modified in a few cases
for clarity. The descriptions can be found in Appendix A. Stock
images were included for products that were missing images in
the Design Repository and product titles were modified to repre-
sent the generic versions of the product. Each triplet presented
to participants contained the following information about each
product: a title, image, and description of the product function of
either type. An example triplet is shown in Figure 2.

Although images were provided to aid them in understand-
ing what the products were, participants were instructed to judge
similarity along the dimension of function and not form. The
participants were instructed to consider the overall purpose of the
product when presented with the shorter descriptions and to con-
sider the way in which the product worked when presented with
the longer description. Each participant made judgements on the
same subset of triplets twice, once presented with the shorter de-
scriptions and once presented with the longer description.

After approval from an Institutional Review Board, data was

FIGURE 2: Example of a triplet query. The function description
text displayed under the three images were descriptions from one
of the two levels of abstraction (detailed in Appendix A. Here,
the higher abstraction is shown.

collected from a total of 69 participants. Data from one partic-
ipant was removed, as they did not follow instructions. The in-
cluded participants consisted of 42 undergraduate students, 16
graduate students, and 10 others (including working profession-
als), and among them were 50 participants who identified as
male, 17 who identified as female, and 1 who preferred not to
say. A majority of participants were pursuing, or had gradu-
ated with, a mechanical engineering degree. 24 of the partici-
pants indicated that they had greater than 4 years of engineer-
ing/design experience through courses, work, or extracurricular
activities. 36 of the participants were shown the longer, lower-
abstraction descriptions first, while 32 were shown the shorter,
higher-abstraction descriptions first.

A total of 2720 triplet ratings were collected from the partic-
ipants, who each provided 40 ratings. Half of each set of ratings
(1360 triplets) contained information about each level of func-
tional abstraction. Therefore, each set of triplets collected con-
sisted of 42 percent of the total possible triplets (3240 triplets).
Previous applications of the two-dimensional embedding tech-
niques considered here use 20 percent of triplets [37, 38]. Ad-
ditionally, prior work that incorporates the full triplet set found
that using 30 percent of the triplet set was sufficient and that the
methods were robust to a small number of false ratings [32].

3.3 Generating a 2D embedding space
Once the triplets were collected, they were mapped to a

2D space. The two-dimensional data embeddings can be con-
structed by using the triplets as constraints to where points (in
this case, products) are placed within the 2D space. One method
to do this is t-Distributed Stochastic Triplet Embedding (t-STE).
This method defines a probability density distribution (a heavy-
tailed kernel) and maximizes these probabilities with respect to
the embedding points so that a triplet is satisfied. Addition-
ally, the maximization ensures that similar points are collapsed
while dissimilar points kept apart by triplets are repelled [38].
Other commonly used embedding methods include Generalized
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Non-metric Multidimensional Scaling (GNMDS), Crowd Ker-
nel Learning (CKL), and Stochastic Triplet Embedding (STE)
[36–38]. GNMDS and t-STE have been explicitly applied to
work in the design domain [32,33]. In this work, t-STE was cho-
sen as the embedding method, due to its ability to ensure sim-
ilar points are closer together and dissimilar points are farther
apart, without violating any constraints [38]. Preliminary analy-
ses demonstrated that selecting t-STE as the embedding method
(as opposed to one of the aforementioned techniques) did not
significantly affect the results.

In addition, to address partial triplet collection and the ag-
gregation of triplet ratings from across the population of partici-
pants, two measures, adapted from prior work, were used to de-
termine the quality of the embedding: distance error and triplet
generalization error. Distance error refers to the mean squared
error between the the normalized Euclidean distances derived
from the final embedding and an embedding created with con-
secutively fewer triplets [32]. This measure was used to deter-
mine how much the embedding changes with the addition of new
triplets in order to ensure that there are enough triplets for conver-
gence. Triplet generalization error is calculated by holding out a
set of triplets, calculating the embedding, and then determining
whether the calculated embedding satisfies the triplets that were
held out [38]. This measure was used in order to assess how
successfully the methods could satisfy triplets that were not pro-
vided. Once the embedding was created from triplet ratings, the
Euclidean distances between the points were calculated, range
normalized, and converted to a pairwise similarity matrix.

3.4 Measuring similarity directly from products
After the human conceptualization of function was quanti-

fied, the results were compared to how quantitative measures
determined functional similarity. In order to do this, the full,
lower-level functional models (lower image in Figure 1) for the
same set of products were represented in a mathematical space
as binary matrices, specified using 21 functions and 19 flows (as
defined by the functional basis framework). A 1 was used for the
existence of a specific function in the product and a 0 was used
for the absence of a specific function in the product [14].

The quantitative measures of similarity used were those con-
sidered extensively in prior work by the authors [18]: simple
matching coefficient, Jaccard similarity, cosine similarity, spec-
tral distance [39], NetSimile [40], and DeltaCon [41]. It should
be noted that there are many possible ways to measure similar-
ity and not all were included here. The six measures included in
comparison represent six different characterizations of similar-
ity when applied to functional representations of products. The
measures range from those that are easily interpretable to those
that are not. In addition, although the measures represent more
general formulations that have been applied across several do-
mains, efforts were made to select measures that were the most
meaningful for the context of engineering design. For example,

versions of cosine similarity and a matching measure much like
the simple matching coefficient or Jaccard similarity have been
applied to engineering design [5–7]. More details on these mea-
sures specifically applied to functional models can be found in
our previous work [18]. The first three listed measures involve
variations of directly matching the existence of features (in this
case, functions or flows) across the products being compared.
The latter three listed measures involve modeling the products
as networks and then comparing the network structure in various
ways. For example, the spectral measure incorporates informa-
tion node degree, which refers to the number of sub-functions
operating on a specific flow or a sub-function operating on a
number of flows. This could represent the relative importance
of specific functions and flows within a functional model. By us-
ing two different types of measures, we hoped to include possible
connections to one-to-one matching and relational comparison,
both aspects of the structural alignment model of how humans
determine similarity [21].

The measures were calculated on the product function matri-
ces using the SciPy, NetworkX [42], and NetComp [39] libraries
in Python to obtain pairwise comparisons. These pairwise com-
parisons were range normalized and then converted to similari-
ties if the original form was a distance or dissimilarity. There-
fore, all relative comparisons were scores between 0 and 1, with
1 representing the highest similarity (only found for a product
compared to itself) and 0 representing the lowest similarity.

3.5 Comparing human judgements with computed
similarity

An additional measure was used for comparing the pair-
wise similarity scores from the quantitative measures to those ob-
tained from the crowdsourcing study. The comparison of human
and computational output was formulated as a search problem: a
product was selected as if it was the input of a search and all other
products were ranked relative to that product. This was repeated
for all products (N=20) and the median was taken to represent
results across all products. Typically, rankings can be compared
using statistics such as Spearman’s rho and Kendall’s tau. How-
ever, these statistics do not account for the position of the rank
differences: a ranking that differs in the highest ranks cannot be
distinguished from one that differs in the lowest ranks. As such,
it is difficult to separate the effects of similarity and dissimilar-
ity. Therefore, normalized discounted cumulative gain (NDCG)
was adapted from the field of information retrieval to compare
between the human and computational sources [43]. NDCG can
be used to compare rankings to a “ground truth,” given relevance
scores, with the higher ranks having more importance than lower
ranks (rankings can be reversed when considering dissimilarity).

The discounted cumulative gain (DCG) can be found by us-
ing a logarithmic discount based on the rank position (i is the
rank position, reli is the relevance at rank position i, and n is the
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total number of ranks) as following

DCG =
n

∑
i=1

reli
log2(i+1)

, (1a)

after which it must be normalized by the ideal discounted cumu-
lative gain (IDCG). The IDCG refers to the value of DCG when
the list is sorted in order of relevance so that the highest rank has
the highest relevance [43].

nDCG =
DCG
IDCG

(1b)

In this case, the crowdsourced rankings were considered to
be the “ground truth” and each numerical rank from the crowd-
sourced ranking was used as a relevance score. This was used
to calculated the IDCG. Then, the DCG was calculated for the
ranking of the measure (e.g. cosine similarity) being compared.
Once again, the numerical ranks were used as a relevance score.
Similarity thresholds were considered in the analysis to acknowl-
edge that some of the products within the global product space
would not be similar to each other at all. When a threshold was
set (using the entire pairwise score matrix), products below the
threshold then would have a relevance of 0 when appearing in
any ranking. If the rankings by humans and a quantitative mea-
sure were exactly the same, the NDCG would return a value of 1.
NDCG was calculated using the Scikit-learn library in Python.

4 Results
Similarity determined from crowdsourced human data was

compared to the calculated similarity scores using the methods
outlined in Section 3 and considering levels of abstraction. First,
the data collected by having participants consider a lower-level
abstraction of product function (i.e. the product’s working mech-
anism) was quantified into a 2D embedding space using t-STE.
Other methods for creating the 2D embedding were compared to
verify the quality of using the t-STE embedding method. After
comparing crowdsourced and computational results at the same
level of abstraction, data collected by having participants con-
sider a higher level of abstraction (i.e. the product’s purpose) was
examined to investigate the effect of abstraction on the agreement
between human and computational similarity assessment.

4.1 2D embedding space of product function
The collected triplets regarding a product’s working mecha-

nism were used to create a 2D embedding of the product space
using t-STE. The final map provides a visualization of which
products were considered functionally similar by participants un-
der this perspective and is shown in Figure 3. Before using the
pairwise similarity matrix derived from Figure 3 in further anal-
ysis, some steps were taken to ensure that the generated embed-
ding provided a satisfactory representation of the human data.

Creation of the 2D embedding was replicated using the three
other common triplet embedding methods (GNMDS, CKL, and
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FIGURE 3: Two-dimensional embedding constructed with t-STE
from crowdsourced triplets (based on how the products work)

STE). For all of the methods, triplet generalization error and
distance error were calculated using fractions of the collected
triplets to the full number of collected triplets. As shown in Fig-
ure 4a, the GNMDS, STE, and t-STE methods demonstrate a
level of convergence before the full number of collected triplets
are included. The t-STE method has the lowest triplet general-
ization error by a small margin when incorporating all of the col-
lected triplets. Even using the full number of collected triplets,
about 30 percent of the triplet constraints were not satisfied in
the embedding. The occurrence of unsatisfied constraints is in
line with previous experiments using triplet embedding methods
where not all of the triplet constraints being satisfied [32, 38].
This can be attributed to inconsistency across the crowd among
other reasons. Using distance error, as shown in Figure 4b, GN-
MDS, STE, and t-STE demonstrate a level of convergence in em-
beddings at about 50 percent of collected triplets. At this point,
the similarity scores change only slightly in comparison to the
scores from the final embedding. CKL does not demonstrate con-
vergence in either case and therefore, was not considered further.

Finally, the median rank correlation coefficient (Kendall’s
tau) of the product rankings was calculated across the methods,
as shown in Figure 4c, to determine if there were differences
in the rankings (i.e. relative similarities calculated from the 2D
space) when using a specific triplet embedding method. There
is a strong correlation between rankings across methods, demon-
strating that in addition to performing similarly in terms of errors
in satisfying triplet constraints, the different methods only have a
small effect on the resulting pairwise similarities. A closer look
at the 2D embedding in Figure 3 verifies that products that were
expected to be close to each other in the 2D embedding space
(e.g. the two vise grips, located in the upper middle area) are
actually close to each other using t-STE.
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FIGURE 4: Triplet generalization error and distance error verify that the t-STE embedding is not significantly changing with the addition
of new triplets after a point. The embedding technique does not significantly impact similarity values derived from the triplet embeddings.

4.2 Human judgements vs. quantitative measures at
a lower level of abstraction

Pairwise similarities derived from the embedding shown
in Figure 3 (where functional similarity is defined based on
how the products works) were compared to those derived from
quantitative measures, using the NDCG. When using relative
pairwise comparisons, the comparisons must be made using
rankings instead of absolute scores since the distribution of
values generated across the different similarity measures varies.
However, converting to rankings leads to loss of information
about whether a product or set of products in the ranking are
significantly farther away overall (i.e. the global structure of the
2D space). In other words, since the rankings consider a product
compared with all other products, the individual rankings might
include products that have very little or no relevance to each
other. For this reason, thresholds were introduced to separate
relevant products from non-relevant products within the entire
product space. The thresholds were based on percentile in order
to account for the fact that the same threshold could not be used
across all measures. For example, at the 50th percentile, the
threshold value was set to the median value of all similarity
scores for any given pairwise similarity matrix (crowdsourced
or directly computed). Then, when the individual rankings
were compared as outlined in Section 3.5, product comparisons
with similarity scores that fell below the threshold would be
uniformly considered as not relevant for the NDCG calculation.

Similarity. Figure 5 shows the median NDCG across all
quantitative measures from using no threshold to a threshold
at the 90th percentile (only the top two most similar products
are relevant). Though NDCG does not differ by a large amount
across any measure, Figure 5 indicates that either the Jaccard
similarity or the cosine similarity consistently has the highest
median NDCG of all the measures even with varying thresholds.
The highest median NDCG corresponds to the highest alignment

of a measure with what participants considered to be most
functionally similar, at least as a summary across products. Both
the Jaccard and cosine similarity measures consider products
to be more similar when they have large numbers of features
(in this case, function-flow pairs) in common when directly
computed on functional models. A high median NDCG for
these measures, therefore, may provide some implication that
humans also rely on finding and matching common functions or
flows when considering how a product works, rather than taking
a more holistic view.
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FIGURE 5: Median NDCG for measures compared to human
evaluations, considering similar products (based on how the
products work)

Dissimilarity. Figure 6 shows results from the same procedure
to separate relevant products from irrelevant ones. However, the
NDCG now accounts for reversed rankings to prioritize human-
computation alignment with regard to dissimilarity rather than
similarity. With no threshold, at the 0th percentile, the notion of
dissimilarity is based truly on the most dissimilar products. How-
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FIGURE 6: Median NDCG for measures compared to human
evaluations, considering dissimilar products (based on how the
products work). As the threshold increases, dissimilar products
may be viewed as “somewhat similar” products.

ever, it should be noted that with higher thresholds applied, the
notion of dissimilarity slightly changes: dissimilar products are
considered only out of relevant products, as determined by the
threshold. Therefore, as threshold values increase, NDCG prior-
itizes what may be seen as the middle-ground where the prod-
ucts are not too similar, but also not too dissimilar (in design-
by-analogy, this may be what has been referred to as the “sweet
spot” according to Fu et al. [24]). Figure 6 reveals that there is
no measure that has a consistently higher median NDCG when
considering dissimilarity. The measure that aligns the most with
quantified human judgement highly depends on the line where a
product is considered too dissimilar to be relevant. In determin-
ing similarity between how products work, therefore, the same
quantitative measure may not be able to align with human judge-
ments regarding all three of highly similar products, “somewhat
similar” products, and highly dissimilar products.

4.3 Product function at different levels of abstraction
In this section, we probe if the results are affected by chang-

ing abstraction level, defined here as the product’s purpose vs.
working mechanism. Since the participants were presented with
the same 20 triplets (in a randomized order) for each level of
abstraction, each participant’s ratings could be compared across
levels to see if the triplets were answered in the same way. Partic-
ipants answered a median of 70 percent (min: 35%, max: 95%)
of the triplets in the same way across both conditions, indicat-
ing that participants sometimes had different answers when pre-
sented with the two types of function information.

The triplets from when participants were asked to consider
the product’s purpose (a higher level of abstraction) were then
used to create a second 2D embedding of the product space us-
ing t-STE. Once again, a pairwise similarity matrix was com-
puted from the embedding. A rank correlation for each product

across the levels of abstraction as displayed in Table 1 shows
that for some of the products, the rankings match regardless of
how function was presented, while for others, the rankings differ
significantly. Therefore, it is likely that the non-matching triplets
were driven by a smaller subset of products where there is signifi-
cant divergence in how humans consider similarity when framing
function around a product’s purpose vs. working mechanism.

TABLE 1: Rank correlation coefficient (Kendall’s tau) for each
product when comparing human-evaluated similarities across
functional abstraction levels. Shaded rows indicate the subset
of products with a rank correlation coefficient below the median.

Product Rank Corr. Coeff. p-value

Toy Plane 0.31 0.068

Alcohol Detector 0.64 <0.01

All-in-one Printer 0.50 <0.01

Bike 0.65 <0.01

Blower/Vacuum 0.22 0.21

CD Player 0.68 <0.01

Drink Cooler 0.60 <0.01

DVD Player 0.72 <0.01

Nerf Gun 0.40 0.016

Game Controller 0.36 0.034

Power Razor 0.56 <0.01

Stapler 0.58 <0.01

Hulk Hands 0.33 0.049

Lawn Mower 0.42 0.013

Quick Grip Vise 0.73 <0.01

Scooter 0.65 <0.01

VHS Player 0.67 <0.01

Vise Grip 0.78 <0.01

Water Pump 0.18 0.37

Zip Disk Drive 0.59 <0.01

4.4 Human judgements vs. quantitative measures at
a higher level of abstraction

Finally, the effect of functional abstraction level was inves-
tigated by analyzing the smaller product subset. This subset con-
sisted of products with a low correlation between rankings ac-
cording to the product purpose vs. how the product works (a
correlation coefficient below the median as shown by the shaded
rows in Table 1). Then, the same procedure in Section 4.2 was
used to create Figure 7.
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FIGURE 7: Median NDCG for measures compared to human
evaluations (based on product purpose) across product subset

Figure 7 shows that for this subset of products, Jaccard simi-
larity and cosine similarity no longer align the most at any thresh-
old. Instead, NetSimile, (a measure that compares feature vec-
tors of network properties) has the highest alignment with hu-
mans until a very high threshold, after which the spectral dis-
tance (another network-based measure) is the most aligned with
the human judgements. Through the lens of dissimilarity, as ex-
plained in Section 4.2, no measure clearly has a higher median
NDCG across thresholds even at the higher abstraction. Overall,
the preliminary evidence from this paper indicates that both the
consideration of similarity vs. dissimilarity and higher vs. lower
abstraction affects whether a computational measure matches hu-
man interpretation of functional similarity.

5 Discussion
In order to apply computational methods to design, it is im-

portant to understand when human and computer decisions might
be in conflict. In this work, we explore how these conflicts might
occur when considering functional similarity by directly com-
paring results from human judgements to those calculated from
functional models. In addition, we identify factors that lead to
these conflicts, such as a threshold for similarity or different lev-
els of abstraction. We find that human perception of functional
similarity does not necessarily stay consistent when comparing
products that are the most similar to each other, as opposed to
those that are further away, but still relevant. This is particu-
larly pertinent for analogical design, where comparisons in both
the former and latter categories may be important. Additionally,
for a subset of products, varying abstraction level considerably
affects what people considered to be similar product functions.
No single similarity measure matches best with human ratings
across abstraction levels, indicating a possible need to use differ-
ent types of measures (e.g. feature matching or network struc-
ture) depending on abstraction. These points are expanded fur-
ther below.

5.1 Alignment between human evaluations and com-
puted similarity

In the results, we show that crowdsourcing and triplet em-
bedding with t-STE can be used to quantify how people consider
products to be functionally similar. We create the human similar-
ity judgement embedding as an aggregate across the participant
population though in reality, individuals may perceive similarity
in different ways, even when instructions specify consideration
along a certain dimension. While many of the limitations to using
the 2D embeddings mentioned by Ahmed et al. [32] still apply,
the method provides a way to compare these judgements with
what we can directly compute from functional representations of
products without using a specific design task. In addition, the
results support the use of measures such as cosine similarity that
have been applied in engineering design, showing them to align
relatively well with what humans think when considering high
similarity products at a lower abstraction level (how they work).
These results are also in line with prior work which indicates
that people may use a structural alignment approach in similarity,
and specifically notes that people tend to match common features
across items, an attribute that is shared by the Jaccard and cosine
similarity measure [30].

5.2 Similar, “somewhat similar,” and dissimilar
We find that the measures that align the most in terms of

similarity do not necessarily match up in terms of dissimilarity.
When looking at the most dissimilar items, there is disagreement
between which measures align the most with humans, depending
on when an item is included as relevant. Therefore, it appears
that the way people consider highly similar items cannot be cap-
tured in the same way as how people consider “somewhat simi-
lar” items. It is possible that the embedding does not accurately
capture how people think of dissimilarity, as they are specifically
asked to select the more similar product in the triplet. However,
when similarity thresholds are added, these instructions should
not affect the results because the dissimilar items are still “rel-
evant” (i.e. similar in some way). There are limitations in the
thresholding approach due to the small number of products con-
sidered, meaning that certain products may not have had items
within the dataset that were similar at all. Further investigation
into dissimilarity and similarity thresholds may correspond to
finding products that are “far” but not “too far” in terms of ana-
logical distance. Additionally, it is possible that when deciding
to utilize a measure to search for far-field sources of inspiration,
it is desirable to choose a measure that does not have the highest
alignment with human similarity judgements in order to provide
unexpected results, as indicated by Fu et al. [12].

5.3 Effect of abstraction level on alignment
Finally, our results indicate that the level of abstraction can

confound the return of products that humans consider to be
most functionally similar when computing similarity measures
directly on product representations. Although we expected that
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the 2D embeddings would look significantly different for almost
all products when considering the different levels of abstraction,
it turns out that a smaller subset of products may drive the dif-
ferences. An overlay of maps of the subset of products with low
rank correlations (below the median) is shown in Figure 8.
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FIGURE 8: Two-dimensional embeddings for the subset of prod-
ucts with low rank correlation coefficients across abstraction lev-
els (visualized using Procrustes analysis in SciPy). Some prod-
ucts are brought closer together or pushed farther apart from each
other depending on the level of functional abstraction considered.

From this map, a specific example of the effect of abstrac-
tion is in the trio of products including the Hulk Hands, Toy
Plane, and Nerf Gun. The Hulk Hands product and the Toy Plane
product are closer in the higher abstraction function map (their
functions are described as providing sound and motion for enter-
tainment respectively), while the Toy Plane product moves away
from the Hulk Hands product and closer to the Nerf Gun product
in the lower abstraction function map. This can potentially be
explained by the shared pneumatic mechanism between the Toy
Plane and Nerf Gun that is not considered for its overall purpose.
We note that the function information presented to participants
for the lower level of abstraction was summarized from the full
functional model and therefore, not necessarily complete. By
investigating a larger variety of products, it may be possible to
understand the types of products for which abstraction level af-
fects consideration of functional similarity and why. In addition,
Chaudhari et al. [44] point out that how people view similarity
is dynamic. This is an important consideration when looking at
levels of abstraction, where the level of expertise may play a role
in the ability to draw more abstract functional connections.

When comparing the human judgements with quantitative
measures directly computed on products and including the fac-
tor of abstraction, we recognize a discrepancy in access to infor-

mation: humans were provided with the higher-level function,
while the measures still operated on the full, lower-level func-
tional model. This discrepancy can be addressed by using prun-
ing rules on the functional models to remove unimportant infor-
mation as done by Caldwell and Mocko [26]. However, it may
also be desirable for a computed measure to be able to infer the
higher abstraction from lower-level attributes rather have to di-
rectly provide both levels of abstraction. From this perspective,
it is notable that the measures that align the best with human
judgements are network-based, in contrast to when considering
the lower-level abstraction where more feature-based matching
measures suffice. Thus, a network-based measure has the poten-
tial to encode the aspect of how humans consider relations and
sets of relations within items when making comparisons as pro-
posed by Gentner and Markman [21], in order to allow access to
the higher abstraction without the effort needed to directly learn
the latent space with large amounts of data.

6 Conclusion
In this paper, we crowdsource human similarity judgements

of functional similarity, using a set of consumer products, and
apply a triplet embedding method to quantify these human judg-
ments in a 2D embedding space. With this representation, we
provide insight into the alignment between how humans view
functional similarity and how these functional similarities can be
directly computed from the products. We find that measures like
cosine similarity, that have been used to calculate functional sim-
ilarity in prior work, appear to align with the ways in which hu-
mans consider highly similar products at lower-level abstraction
(i.e. how products work), even outside the context of a partic-
ular design task. Our results indicate that the way highly simi-
lar products are considered by humans compared to “somewhat
similar” products may not be captured by these existing mea-
sures, affecting applications such as design-by-analogy, where
analogical distance must be controlled. In addition, we find that
for some products, the level of abstraction is a factor that can
influence whether human judgements align with computational
measures. Factoring in higher functional abstraction, network-
based measures that account for relations between elements may
be appropriate. These types of measures can potentially be used
to represent how humans abstract function when it is not possible
to directly learn a measure from a large quantity of data collected
from humans.
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APPENDIX A Products and Function Descriptions
Product Product purpose 

(higher abstraction) 
How product works  
(lower abstraction) 
  

Toy Plane Provide motion for 
entertainment 

Humans pump pressurized air into the plane and throw it 
to give the plane translational motion. The propellors 
rotate. 
  

Alcohol 
Detector 

Measure alcohol Humans turn on the device and blow into it. The device 
collects the breath sample and uses a chemical reaction 
to determine and display the alcohol level.  

All-in-one 
Printer 

Transform paper Humans turn the printer on and insert paper. Print data is 
imported to the printer and then electrical energy is used 
to signal the printer to release the stored liquid ink. The 
ink changes the blank paper to the printed paper and the 
print status is displayed. A scanned document is 
converted to a signal and exported as scan data.  
  

Bike Transfer human Humans pedal to provide mechanical energy for 
translational motion to transport themselves.  

Blower/ 
Vacuum 

Import air and debris 
and expel air 

Humans turn on the device and electrical energy is used 
to signal the blower or vacuum setting. Air is expelled in 
the blower setting. An air and debris mixture is taken in 
and the debris are stored in the vacuum setting.  

CD Player Read a CD Humans insert a CD and turn on the player. Electrical 
energy is used to start mechanical rotation of the CD and 
the lens focuses electromagnetic energy (laser) on the 
moving disk to read it and play the relevant audio. 
Buttons are used to control other actions such as pause 
and repeat.  
  

Drink 
Cooler 

Transfer thermal 
energy 

Humans place the device on a surface and places a cup 
on top. Electrical energy is used to start mechanical 
rotation of a fan and extract heat. The fan expels air and 
the heat is transferred out. 
  

DVD 
Player 

Read a DVD Humans insert a DVD and turn on the player. Electrical 
energy is used to start mechanical rotation and the lens 
focuses electromagnetic energy (laser) on the moving 
disk to read it. The electromagnetic energy is changed to 
electrical energy, which is used to display the video and 
play audio. Buttons are used to control other actions such 
as pause and eject. 
  

Nerf Gun Export ammo Humans load the ammo, pump air into the gun, and pull a 
mechanical trigger. The pressurized air causes 
translational motion of the ammo and the gun emits 
noise. 
  

Game 
Controller 

Control computer Humans push mechanical buttons or directional joysticks 
to actuate an electric signal. The electric signal is turned 
into a control signal that sends data to the connected 
electronic device as well as into electromagnetic energy 
(light) and mechanical vibration on the controller.   
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Power 
Razor 

Separate hair from 
human 

Humans provide translational motion to the razor over the 
surface of their skin through their hands. Electrical energy 
is converted to mechanical energy in the razor to cut the 
hair and separate it from the surface of the skin. The 
razor releases the cut hair, heat, and noise. 
  

Stapler Couple paper Humans store staples in the stapler. Paper is positioned 
between the top and bottom housing of the stapler and 
force is applied to the top housing by the hand. The 
staple is separated from other staples and couples the 
sheets of paper together. The stapler releases the 
stapled pages and noise.  
  

Hulk 
Hands 

Emit sound for 
entertainment 

Humans place their hands in the gloves. The gloves 
detect and process an electrical signal from human 
movement. The electrical signal is converted to noise. 
  

Lawn 
Mower 

Separate grass from 
ground 

Humans push the lawn mower to add translational motion 
and turn it on. Liquid fuel is stored and the chemical 
energy in it is converted to mechanical energy. The 
mechanical energy is used to cut the grass and expel the 
cut grass pieces. The lawn mower releases heat, noise, 
and fumes.  
  

Quick 
Grip Vise 

Secure solid Humans position the object and secure it by applying 
force to clamp it.  
  

Scooter Transfer human Humans provide or stop translational motion to transport 
themselves. 
  

VHS 
Player 

Read a VHS tape Humans turn on the player insert the tape, which is 
sensed and then guided in. Electrical energy is used 
mechanically translate the tape and then to start 
mechanical rotation of the wheels. The magnetic tape 
reel is read and encoded into video and audio signals, 
which are played.  Electrical energy is also converted to 
electromagnetic energy (light) to indicate the status. 
Buttons are used to control other signals such as stop 
and eject.  
  

Vise Grip Secure solid Humans position the object and secure it by applying 
force, changing its status from unclamped to clamped.  

Water 
Pump 

Move liquid Humans turn the pump on. Electrical energy is converted 
to mechanical energy and then to pressurized air within 
the pump, which moves the liquid. Heat, noise, and 
pressurized air are released.  

Zip Disk 
Drive 

Read a zip disk Humans turn on the reader and insert a zip disk, which is 
sensed and guided in. Electrical energy is converted to 
mechanical energy to rotate the disk and to actuate 
translation for the reading head. The magnetic energy 
from the disk is converted to electrical energy and is 
exported as data. 
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