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ABSTRACT

In order to retrieve analogous designs for design-by-
analogy, computational systems require the calculation of sim-
ilarity between the target design and a repository of source de-
signs. Representing designs as functional abstractions can sup-
port designers in practicing design-by-analogy by minimizing
fixation on surface-level similarities. In addition, when a design
is represented by a functional model using a function-flow for-
mat, many measures are available to determine functional sim-
ilarity. In most current function-based design-by-analogy sys-
tems, the functions are represented as vectors and measures like
cosine similarity are used to retrieve analogous designs. How-
ever, it is hypothesized that changing the similarity measure can
significantly change the examples that are retrieved. In this pa-
per, several similarity measures are empirically tested across a
set of functional models of energy harvesting products. In ad-
dition, the paper explores representing the functional models as
networks to find functionally similar designs using graph simi-
larity measures. Surprisingly, the types of designs that are con-
sidered similar by vector-based and one of the graph similar-
ity measures are found to vary significantly. Even among a set
of functional models that share known similar technology, the
different measures find inconsistent degrees of similarity — some
measures find the set of models to be very similar and some find
them to be very dissimilar. The findings have implications on the
choice of similarity metric and its effect on finding analogous de-
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signs that, in this case, have similar pairs of functions and flows
in their functional models. Since literature has shown that the
types of designs presented can impact their effectiveness in aid-
ing the design process, this work intends to spur further consid-
eration of the impact of using different similarity measures when
assessing design similarity computationally.

1 Introduction

As information across different domains of designs becomes
increasingly accessible, it has become possible to leverage this
data to provide sources of inspiration to designers. Design-
by-analogy is a method designers have used to transfer knowl-
edge from cross-domain sources and apply it to a target do-
main [1,2]. When humans retrieve analogies on their own, they
can have difficulty moving past surface-level similarities, often
finding within-domain analogs that share readily-observed exter-
nal attributes rather than underlying structural similarity. Com-
putational systems grant the opportunity to search for analogies
within a larger space and automatically determine the relevant
analogous design. Since these systems do not rely on surface-
level similarities, they are able to retrieve more distant analogies
based upon underlying functional patterns across domains [3].
The presentation of computationally-determined real-time ana-
logical stimuli during early-stage design has been found to help
designers produce novel outcomes [4].

Significant work has been done on analogy retrieval based
on semantic representations of products such as design descrip-
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tions from a design problem solving session [4] or crowd-sourced
design schema representations [3]. However, it can be advanta-
geous to focus on functional analogies to further remove pos-
sibilities for fixation on surface similarities. To incorporate the
advantages of functional representations, researchers have also
developed a method to retrieve analogies using a function-based
approach on semantic data [5,6]. However, functional models of-
fer an alternative to semantic descriptions, providing structured
system or subsystem level representations that are useful for de-
signers [7]. In addition, functional models have been useful in
cases such as bio-inspired design, where the source vocabulary
is significantly different from that of the target [8]. A significant
benefit of functional models is their ability to be mapped to a
mathematical space, where a variety of measures are available to
characterize the distance between them.

Design cognition work has shown that different analogical
distances can impact a designer’s ideation processes, even on a
neural level [9]. It can be desirable to systematically control for
distance in computational design by analogy in order to lever-
age the effects of near vs. far analogs. In that case, it is critical
to clearly define near and far through a measure of similarity.
However, it is possible that using different measures can return
drastically different analogs and that different measures are ap-
propriate for different contexts. This work empirically questions
the meaning of similarity in engineering design by explicitly
comparing multiple similarity measures and how they measure
similarity across functional models. Specifically, we investigate
the identification of similar functional models using vector space
based methods, such as those already used frequently within the
engineering design community. In addition, we explore the pos-
sibility of representing functional models as networks and apply-
ing graph similarity measures. The work has implications for
defining analogical distance for computational systems, but is
applicable to any context where it is necessary to systematically
determine the similarity between designs.

1.1 Similarity in Engineering Design

Similarity has been addressed in the engineering design
community through the development of computational systems
for retrieving analogous designs and through assessing design
similarity in ideation. A variety of metrics have been used to
define the similarity between designs. For instance, critical func-
tion chains have been extracted from functional models and a
variety of matching metrics have been applied to determine sim-
ilarity between the chains to find analogies [10]. A similarity
metric has also been developed to compare functional models
from a product repository using customer needs [11]. The metric
has been shown to successfully find relevant analogies as demon-
strated by its example application in finding analogies to drive
the design of a new guitar pickup winder [11]. Since it can
be difficult to ensure that domain specific knowledge like cus-
tomer needs is encoded in functional models, later work has used

the metric directly without customer need weightings, [12, 13]
demonstrating an underlying assumption that notions of sim-
ilarity will not significantly change without that information.
Additionally, a significant body of work has used natural lan-
guage processing in order to retrieve functionally similar analo-
gies from existing repositories (e.g., the U.S. patent database). In
this case, as it is necessary to compare texts of different lengths,
the cosine similarity measure is typically used [5, 6]. The use
of latent semantic indexing and cosine similarity has been com-
pared to the quantitative metric for similarity based on customer
needs in the context of quantifying similarity between automat-
ically generated concepts [14]. Finally, recent work has applied
KL-divergence to determine similarity between designs in a way
that embodies known principles of similarity from cognitive sci-
ence. This similarity metric models knowledge and maps de-
sign characteristics to performance measures before using KL-
divergence. The metric has been utilized to measure similarity
between design problems [15].

The engineering design community has also previously re-
viewed the use of similarity measures to compare designs at
different stages of the design process. In a survey of similar-
ity metrics used in engineering design, spatial function, vector
space, edit distance, template model, and information theory ap-
proaches were evaluated holistically but qualitatively (i.e., no
empirical results). It was determined that an edit distance or in-
formation theory approach should be most suitable to compute
similarity between designs at the function structure stage of the
design process [16]. While various types of metrics have been
used to try to find design similarity, there has been a lack of
empirical testing on how the measures directly compare to each
other and therefore, no way to determine the appropriate occa-
sion to use each one.

Quantitative measures of similarity between different de-
signs are important given that prior research in engineering de-
sign has revealed that analogies of varying distances can have dif-
ferent impacts on design outcomes. Analogical distance refers to
how close the source design is to the target design. The analogies
have been divided into near-field and far-field analogies. Previ-
ous work classifies within-domain systems as near and out-of-
domain systems as far. Significant work has also been done to
determine if the analogical distance affects the novelty or quality
of ideas since far-field ideas may have functional similarities that
make them transferable. This has revealed contradictory results
and has indicated that there is a problem of “too far” in analogical
distance [5]. At the same time, the results of this body of work in-
dicates that the types of analogous designs presented affect their
usefulness to designers. If the similarity measure significantly
influences what is considered functionally similar, then different
similarity measures have the potential to offer new ways to find
near-field and far-field analogies for design, or alternatively, ne-
cessitate reassessment of the importance in the choice of metric
used to find analogous designs.
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1.2 Functional Modeling

Functional modeling is a group of methods by which a prod-
uct can be decomposed into its key functions, providing an ab-
straction of the system that is useful for various stages of the de-
sign process. In early-stage design and concept generation, func-
tional modeling can be used to decompose a complex problem
into simpler sub-problems by using a black box approach [17]. In
addition, functional modeling provides a way to capture impor-
tant knowledge about existing designs that is not captured in tra-
ditional documentation such as CAD models [18]. There are lim-
itations to using functional models, especially in early-stage de-
sign, since existing functional models are created through reverse
engineering. Additionally, there have been several approaches to
functional modeling [17, 19-22], but the development of a func-
tional basis has provided a common design language, allowing
meaningful comparisons at the functional level [23].

The functional basis allows a product to be represented by
labeling its functions and flows in pairs using a standardized vo-
cabulary. There are three primary classes of flows (material, en-
ergy, and signal) and eight primary classes of functions (chan-
nel, support, connect, branch, provision, control magnitude, con-
vert, and signal). These function and flow classes can have a
further secondary and tertiary specification, maintaining flexibil-
ity in the level of abstraction in which a system can be modeled
[18,23-25]. Once a product is modeled using these function-flow
pairs, the model can be mapped to a variety of mathematical rep-
resentations that can be used for further analysis. Specifically,
the functional models can be mapped to a vector space or net-
work / graph.

1.3 Measures for a Vector-Space Representation

The majority of prior work utilizing functional models has
mapped the functional models into a vector space for similarity
analysis. A functional model can be mapped to a vector space
by building a binary vector from each of the function-flow pairs.
For example, this mapping was used for the quantitative metric
for similarity based on customer needs, as well as to investigate
the effect of varying the level of abstraction on functional simi-
larity [11,12]. A higher level of abstraction has been used where,
instead of a binary vector of function-flow pairs, a smaller vector
is built using only functions and flows separately [13].

In the method developed by McAdams and Wood, the ele-
ments of each functional model mapped vector is weighted ac-
cording to a customer needs rating. Then, product vectors are
constructed into a product-function matrix, which is normalized
for product complexity and customer enthusiasm rating, and re-
normalized to unity. Finally, the inner product is calculated
between each product vector [11]. When the same process is
followed without assigning weightings according to customer
needs, the results are equivalent to applying the cosine similarity
metric, which measures the cosine of the angle between the two
non-zero vectors. The cosine similarity varies between zero and

one, with one being perfect similarity. The cosine similarity has
commonly been used in an engineering design context because of
its applicability to compare different lengths of text for semantic
similarity. However, in the absence of domain-specific weight-
ing on specific functions, other metrics are available to quantify
the similarity or distance between two binary vectors and may
be applicable to compare functional models. Many metrics have
been developed for this comparison according to different needs,
only some of which are investigated here [26].

1.4 Measures for a Network Representation

Networks mathematically represent the connections be-
tween entities. A network consists of vertices (or nodes) that are
connected by edges. They have been widely used in applications
such as social network analysis and have recently been utilized
by the engineering design field. For example, recent work has
used networks to find bridges between ideas from different do-
mains using topic models [27] and represent a conceptual design
space for early-stage design [28]. In both cases, the networks are
built from information in text documents and are not specific to
functional representations. In addition, networks have been used
to represent complex systems and model system failure [29,30].
Network structures have been used for bio-inspired design of a
power network [31] and to represent influential function mod-
els in a product architecture [32]. Functional models have been
previously represented as networks to investigate product trans-
formation using graph edit distance [33]. The edit distance has
also been previously noted as a relevant similarity measure for
comparing function structures [16].

Just like there are a variety of vector-based approaches, there
are several additional network similarity measures that can cap-
ture the structure of a network. These can be divided into ones
that require known node-correspondence — having a set or sub-
set of matching nodes — and those that can have unknown node-
correspondence [34]. In addition, network similarity measures
can rely on certain network properties including if the networks
are undirected or directed (pointing only in one direction) as well
as if they are unweighted or weighted (edges have a positive con-
tinuous value) [35]. As such, there is the potential to represent
the functional model as a network in several ways.

2 Research Methodology

This paper investigates the impact of using different simi-
larity measures to discover functional analogies from a product
repository. In comparing the different measures, we intend to
gain insight into the meaning of similarity in engineering design.
First, the functional models were mapped to the desired mathe-
matical space (a binary vector or a network) as shown in Figure
1. Then, a similarity matrix between all of the models in the
repository was computed for each measure. The similarity ma-
trices were all range normalized so the similarity score was be-
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tween zero and one. The measures were quantitatively and qual-
itatively compared to gain insights regarding how each measure
influences which designs are considered similar.
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FIGURE 1. The functional model data is in the form of a binary ma-
trix connecting functions and flows. This matrix is flattened to a vector
(left) or used as an adjacency matrix and represented as a network (right)
as shown in this example with the Nova Energy Tuna Turbine. If the ma-
trix contains a 1, an edge connects the function node to the flow node.
If the matrix contains a 0, those nodes are not connected. Functions can
only be connected directly to flows, not other functions, and flows can
only be connected directly to functions, not other flows.

2.1 Functional Model Data

The functional models used in this work came from previ-
ous work where functional models were developed for 39 energy
harvesting devices using the functional basis [13]. This data was
analyzed since the set of energy harvesting devices is inherently
similar by technology. As a result, the similarity measures were
expected to find systems that share a similar working principle
to be “near”. The systems included energy harvesters of differ-
ent types and ranged from prototypes to commercial products.
The energy harvesting functional models were categorized into
technological sub-domains as follows:

9 inductive vibration harvesters
6 piezoelectric vibration harvesters

6 wind harvesters

3 ocean-current/wave harvesters
6 solar harvesters

5 thermal harvesters

4 hybrid harvesters

Details about the categorization of the energy harvesting devices
can be found in Appendix A. The functional models of these en-
ergy harvesting devices were developed using 21 functions and
16 flows (a list of these can be found in Appendix B). The
functions were specified to the secondary level while the flows
are sometimes specified to the tertiary level. For example, the
flow mechanical energy was clarified further to be rotational or
translational. The functional models did not include information
about the sequencing of function-flow pairs in the system, the
repetition of any functions or flows, or the relative importance of
any functions/flows.

2.2 Measures of Similarity Using Vectors

The functional models were mapped to a vector space by
building a binary vector from the existence of function-flow pairs
in the system. Therefore, for n functions and m flows, each func-
tional model was represented by a vector of zeros and ones of
length n x m. These vectors were then used for any similarity
computation. The similarity measures were chosen only if they
were applicable to binary data. The similarity measures do not
always satisfy the specific definition of a metric and therefore are
not referred to as such. In addition, there was an effort only to
compare measures that have been previously used in the engi-
neering design field. It should be noted that some measures are
referred to (or calculated) as distances and dissimilarities. These
were always converted to measures of similarity before compari-
son. The vector-based similarity measures explored in this work
are described in more detail below.

Simple matching coefficient (SMC). The Hamming distance is
the number of differences in corresponding positions of two bi-
nary vectors. Eq. la shows that the formula for Hamming dis-
tance is

Hamming distance = Z |x1 —x2], (la)

where x| and x, are the two binary vectors being compared. The
measure is often divided by n (vector length) in computational
packages to obtain a proportion. This proportion can then be
converted to the simple matching coefficient (SMC) as
smc =1 EFi=0l (1b)
n
The SMC can only be used on binary data and is useful if the

features are symmetric. This means that the absence or presence
of the feature carries equal information.
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Jaccard similarity coefficient. The Jaccard similarity co-
efficient and the SMC are close in their comparison of binary
vectors. Eq. 2 shows that the formulation of the Jaccard
similarity coefficient is

|x1 Ny |

(@)

Jaccard similarity = ———,
|)C1 U)Cz|
where x; when x; are the two binary vectors being compared.
Unlike the SMC, however, the Jaccard similarity coefficient ex-
cludes any features that are not present in either vector. There-
fore, it only accounts for mutually present matches between the
vectors. The Jaccard similarity as defined above can be used on
binary data and modifications allow the measure to be used with
weights or probability distributions.

Cosine similarity. The cosine similarity determines similarity
based on the the angle between two vectors in a vector space. It
is

X1 X2

ATIRTITINTE, (3a)
[l ez

Cosine similarity =
where x; and x, are the two vectors being compared. The quan-
titative similarity metric developed by McAdams reduces to this
measure when information about customer needs is not available.
When used on binary data, the equation can be rewritten as

|)C1 ﬁ)Cz‘

Ml R 1 (3b)
[t ][]

Cosine similarity =
The numerator is the same as in the Jaccard similarity coefficient
from Eq. 2. The cosine similarity can be used on binary data but
does not need the data to be binary. It is commonly used in the
context of comparing text documents of different lengths since
it compares the orientation of two vectors in a high-dimensional
abstract space.

2.3 Measures of Similarity Using Networks

To represent a functional model as a network, the functions
and flows of each product were first mapped to a binary ma-
trix. Each function and flow was represented as a node and the
edges were determined by the values in the matrix. Edges be-
tween functions and flows existed only if the binary matrix had
a 1 in the corresponding row and column. The network com-
parison measures were chosen so that they would be applicable
to undirected and unweighted networks, as the functional mod-
els do not contain information about the direction of connec-
tions between different functions or about relative importance of
functions (note that some graph-based similarity measures are
specifically developed to handle these properties). In addition,
feature-based approaches for network comparisons (clustering
coefficient, centrality, etc.) were not considered. The graph sim-
ilarity measures were formulated as distances and then converted
to similarity for comparison. The networks were visualized and

analyzed using the NetworkX [36] and NetComp [37] libraries
in Python.

Graph edit distance (GED). The graph edit distance has many
implementations depending on the graph type. It refers to the re-
quired deletions, insertions, or substitutions of vertices or edges
to make the two graphs isomorphic. In the case where the edges
between the nodes depend only on the existence of a connection,
the graphs can be compared using their adjacency matrices (A,
A»). The graph edit distance is then

Y|A; — A

GED =
2

“
The GED is useful if the matrix used (in this case, the adjacency
matrix) contains useful information about the graph structure.
Since it focuses on edge changes, the GED can be good for de-
tecting local structure. In this implementation, the formulation is
similar to the SMC (Eq. 1b).

Spectral distance. Spectral distances are based on the eigenval-
ues of a matrix. In this case, the spectral distance is defined as

Spectral distance = || A4 — A, |, (52)

where A ¢, and A ¢, are the eigenvalues of the Laplacian matrices
(A,-). The Laplacian matrix is

=D, — A (5b)

In addition to using the adjacency matrices (A1, A;) that are used
in calculating GED, the spectral distance accounts for the degree
matrices (D1, D;) through the Laplacian. The degree matrix is a
diagonal matrix that indicates how many other nodes each node
is connected to.

When the Laplacian matrix is normalized, the spectral dis-
tance can be used to compare graphs of different sizes. In ad-
dition, it does not require the nodes of the two graphs to be the
same. When computing a spectral distance, the number of eigen-
values that are considered can be adjusted, allowing flexibility in
considering community structure (fewer eigenvalues) or includ-
ing local structure (more eigenvalues). Comparisons of several
types of real world networks finds that spectral distance is a reli-
able measure for different applications [37].

DeltaCon distance. The DeltaCon distance is a graph compar-
ison measure intended to account for the similarities in connec-
tivity between two graphs. To do this, the pairwise node affini-
ties are calculated for each graph and then compared to each
other. The node affinities are calculated using a concept called
fast belief propagation (FBP), an approximation of the loopy be-
lief propagation algorithm. This is a message-passing algorithm
often used on graphs in computer science [38]. The FBP matrix
is

S=[I+€D—eA]!, (62)

Copyright (© 2020 by ASME



where € is

1

E= —m.
1 + dinax

(6b)
€ is the constant that accounts for the influence of neighboring
nodes and is computed using the maximum value in the degree
matrix (d,;q). The FBP matrix can also be written as

S~I+eA+€e*(A>—D)+..., (6¢)

demonstrating how it incorporates information about neighbor-
ing nodes using weighting. The final distance is then

DeltaCon distance = Z 1V/S1 = /Ss]. (6d)

Like the spectral distance, the DeltaCon distance uses both the
adjacency matrix (A) and the degree matrix (D). Fast belief prop-
agation is intended to track the spread of information through a
graph, making the DeltaCon method good for local and global
structure [37].

3 Results

The vector and network-based similarity measures outlined
in Section 2 were used to find the similarity between the func-
tional models of all pairs of devices in the energy harvesting data.
The results were stored in similarity matrices and then analyzed
with the objective of determining how the choice of similarity
measure affects which functional models are considered similar
to each other.

3.1 Overall Comparison of Similarity Measures

The similarity matrices, which are pairwise comparisons of
the functional models as evaluated by each similarity measure,
were plotted as a distribution of scores. The distributions illus-
trate the ability of the measures to distinguish functional models
that share an inherent commonality (being from the same tech-
nology domain — in this case, energy harvesting devices). The
kernel density estimate of each similarity measure is shown in
Figure 2.

The mean and Pearson’s coefficient of skewness of the dis-
tributions were calculated for each measure as shown in Table 1.
A large negative coefficient of skewness indicates that the mass
of the distribution is concentrated on the right (higher similarity),
while a large positive coefficient of skewness indicates that the
mass of the distribution is concentrated on the left (lower simi-
larity).

The mean of the spectral similarity was the highest at 0.65
while the mean of the Jaccard similarity was the lowest at 0.31.
The distributions of similarity scores from these two measures
were highly skewed. However, they were skewed in opposite di-
rections, which was unexpected. The Jaccard similarity distribu-
tion was concentrated towards lower similarity, while the spectral

s SMC
= |accard
—— Cosine
--- GED
------ Spectral
—-— DeltaCon

Probability Density

0.00 0.25 0.50 0.75 1.00
Similarity Score

FIGURE 2. Distribution of normalized similarity measures.

TABLE 1. Mean similarity scores and coefficient of skewness of all
energy harvesting devices. Shaded rows indicate measures that have
highly skewed distributions.

Measure ~ Mean Similarity Score  Skew
SMC 0.49 -0.07
Jaccard 0.31 0.97

Cosine 0.44 0.35

GED 0.49 -0.07
Spectral 0.65 -0.81
DeltaCon 0.47 -0.06

similarity was concentrated towards higher similarity. The distri-
bution of the cosine similarity was moderately skewed. All other
measures had distributions that had a low skew.

Next, the similarity matrices were used to determine if the
results returned by each similarity measure were distinct. For
each energy harvesting system, every other energy harvesting
system was ranked in order of its similarity to the initial sys-
tem (tied rankings were included). The purpose of examining
the rankings was to consider the possibility that even if the value
of similarity between two measures was different, the relative
order of systems returned may not differ much. These rankings
were then analyzed using the Kendall rank correlation coefficient
(Kendall’s 7) to obtain a pairwise comparison between the meth-
ods. Due to existence of a distribution of rank coefficients that
depended on the initial system and because of the small sample
size, bootstrapping was used to find the 95% confidence interval
for the pairwise rank coefficient, as shown in Figure 3. A pos-
itive rank correlation coefficient close to one indicates that the
two measures being compared return rankings that are similar
(i.e., they find the same types of functional models similar).

Despite there being a distribution of rank correlation coef-
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FIGURE 3. Kendall rank correlation coefficients between similarity measures are shown, using each of the 39 devices as the “target” design. The
mean and 95% confidence interval from bootstrapping (n=500) is shown for each pair of measures.

ficients, the rank correlation analysis revealed only a moderate
correlation between most similarity measures. However, as ex-
pected from the mathematical formulation, the SMC and GED
similarity measures returned the same results. The Jaccard and
cosine similarity measures were highly correlated within a rela-
tively narrow interval. In addition, the spectral similarity mea-
sure showed a very weak correlation with all vector methods and
the least correlation with any other method overall, including the
DeltaCon distance, the only other measure that included the use
of a degree matrix.

3.2 Most/Least Similar Systems Across All Measures

The rankings used to find the rank correlation coefficient
were used to analyze the results that were returned using each
pair of similarity measures. The five systems ranked highest
and lowest for a measure were compared with the five systems
ranked highest and lowest for another measure. The systems
that appeared in the top (or bottom) five for a pair of measures
were counted. The counts for the intersection did not account
for the order in which the systems appeared. Figure 4 shows a

distribution of the intersection of the top/bottom results as a pair-
wise comparison of measures. The vector measures, in general,
found similar results since they had four to five overlaps in most
cases. Comparing the network measures revealed a larger spread
of overlap, particularly with the spectral graph similarity mea-
sure. While the GED and DeltaCon measures led to similar re-
sults in the top five, the results from the spectral measure did not
appear to overlap with the other network measures. There was
a wider spread in the five least similar systems, even among the
vector measures, unless the measures were highly correlated (e.g.
Jaccard and cosine). Some measures had more overlap in the five
systems considered the most similar than in the five systems con-
sidered the least similar, indicating the potential that different
measures may be needed when looking for the two ends of the
spectrum. The collection of five least similar devices represents
systems that are the farthest within-domain systems. However,
the categorization of “within-domain” was determined manually,
and it is possible that the systems considered the least similar
were functionally quite different from energy harvesting devices
in general. Alternatively, it is possible that the measures agreed
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more on which systems are similar than on which systems are
most dissimilar.

3.3 Comparison of Measures within Categories

The functional models all share the intended purpose of be-
ing energy harvesting devices, but each device was further la-
beled as a specific type of energy harvesting device (wind, solar,
etc.). It was expected that devices within these categories would
have similar working principles. The categorizations for each
device can be found in Appendix A. The mean similarity was
calculated for the systems within these predefined energy cate-
gories as shown in Table 2. Highlighted cells indicate category-
level mean similarity scores that are not greater than or equal to
the overall mean similarity score. The within-category similar-
ity was generally higher than the mean similarity of all energy
categories, although statistical significance was not determined
due to the small sample size. Hybrid systems, which were pre-
defined to contain multiple energy categories, were an exception
and had a lower within-category similarity. In addition, piezo-
electric devices had a lower within-category similarity using the
Jaccard and cosine similarity measures, and solar devices had a

lower within-category similarity using the spectral similarity.

Given the higher similarities for within-category devices,
and that within-category devices should reasonably share the
same working principle, it was expected that the device pairs that
were considered the “most similar” would be devices of the same
category. Table 3 shows the pairs of systems that were considered
the most similar by each measure. The systems are color-coded
by category (found in Appendix A).

This was true in almost every case, where the pair of most
similar systems was a set of either thermal, wind, or solar har-
vesters. However, the spectral measure returns different pairs
than any of the other measures, finding devices from different
categories to be the most similar. In addition, the spectral mea-
sure returns groups that have a similarity score of 1 (perfect sim-
ilarity), despite containing different devices. Even for the other
measures, there is no agreement which specific devices were
“most similar” in absolute terms (e.g. which was more similar
— the pair of wind harvesters or the pair of thermal harvesters?).
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TABLE 2. Mean similarity scores of energy harvesting devices grouped by category. Shaded cells indicate within-category means that are lower than
the overall mean for the similarity measure.

Measure Category Mean Similarity Score Mean Similarity Score
Inductive  Piezoelectric  Wind  Wave  Solar Thermal Hybrid
(n=9) (n=6) (n=6) (n=3) (n=6) (n=5)  (n=4)
SMC 0.61 0.64 075 067 054 0.64 0.45 0.49
Jaccard 0.41 0.31 058 044 040 0.52 0.38 0.31
Cosine 0.55 0.44 072 059 055 0.64 0.52 0.44
GED 0.61 0.64 075 067 054 0.64 0.45 0.49
Spectral 0.71 0.70 0.75 072  0.61 0.68 0.54 0.65
DeltaCon 0.60 0.67 0.67 059 054 0.58 0.39 0.47

TABLE 3. Pairs

wind, solar, wave,

of devices with the highest similarity score (thermal,

inductive, and devices). For the spec-

tral measure, there was a group of three devices that had the highest

similarity.

Measure

Systems Similarity

SMC

Jaccard

Cosine

GED

Spectral

DeltaCon

Micropelt STM-PEM 0.95

Micropelt TE-power Ring

Four Seasons 0.88

Enviro-Energies
Tracking System
Solar Heat Engine w/ Mirrors

Four Seasons 0.93

Enviro-Energies

Tracking System

Solar Heat Engine w/ Mirrors
Micropelt STM-PEM
Micropelt TE-power Ring

0.95

Wing Wave Generator 1
Michigan U Piezo Flag

Nova Energy Tuna Turbine
WindTamer

U Texas Prototype

Columbia Power Manta Buoy
Micropelt STM-PEM
Enocean Eco 100

Micropelt STM-PEM
Micropelt TE-power Ring

0.91

4 Discussion

Due to the fact that functional models can be represented in a
mathematical space, they are well suited to a variety of similarity
measures beyond those used for text documents and descriptions,
and commonly utilized in engineering design. Specifically, there
is the possibility to easily represent a functional model as a net-
work to find structural similarities (as was done in this work).
However, this work shows that the choice of measure changes
empirical findings, and therefore is representative of different in-
terpretations of similarity. Based on previous qualitative analysis
on the energy harvesting device data used in this study, it was
determined that all of the energy harvesting devices have a simi-
lar function structure in general, but differ in some supplemental
functions and flows. This overarching structural similarity was
not captured in the quantitative metric originally used to com-
pare the devices [13]. Even here, the different measures show
different spreads of similarity values as shown in Figure 2. The
spectral measure seems to reflect a domain level similarity be-
tween the energy harvesting systems through its skew towards
higher similarity scores. The spectral distance has been found to
work well to distinguish designs when networks have very sim-
ilar degree matrices but not the same specific functions. In this
context, it can be expected that the degree distributions are very
similar around common functions, such as convert (a key func-
tion for energy harvesting devices since they are all converting
some input to a form of usable energy flow). On the other hand,
measures such as the Jaccard similarity find the complete oppo-
site, indicating low similarity among the set of devices.
4.1 Case Studies
In order to better understand the measures and the types
of systems they returned as most similar, some examples are
examined in more detail. The measures are qualitatively ana-
lyzed under the lens of design exploration and exploitation. Ex-
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ploration relates to activities that help discover new knowledge
while exploitation relates to activities that build on already ex-
isting knowledge [39]. In the context of product design, the two
lead to different outcomes — exploration can lead to more inno-
vative designs (that may translate to better market performance),
while exploitation can lead to a better process performance [40].
Therefore, it can be important to see if measures are more suited
to exploration or exploitation.

The measures that have commonalities in their mathemat-
ical formulation, such as the cosine and Jaccard similarity or
the SMC and GED measures, did not differ significantly in
the systems that were found as most similar. Therefore, the
measures discussed are ones that were not highly correlated
based on the rank coefficient analysis. In general, using a
different vector method did not significantly impact the most
similar systems. However, using one of the network based
methods did change the types of systems identified as the most
similar systems. Examples were chosen to compare among both
vector and network measures.

Vector Measures

To illustrate the case of a difference among the vector mea-
sures, we can examine the group of three devices classified as
wave generators (Columbia Power Manta Buoy, Nova Energy
Tuna Turbine, and Wing Wave Generator). Using the Wing Wave
Generator as an input, we find the most similar device. For all
three measures, the result is another wave generator: the Nova
Energy Tuna Turbine. This is an expected result, as two wave
generators can reasonably work in similar ways. However, using
the Columbia Power Manta Buoy as an input, we get more in-
teresting results. For both the Jaccard and cosine similarity, the
result is another wave generator: the Nova Energy Tuna Turbine.
However, for the SMC, the result is not a wave generator, but
a piezoelectric device (Piezo Backpack Straps). Another wave
generator does not appear until 4th place and the Nova Energy
Tuna Turbine does not appear until 7th place.

The SMC is the only vector measure that finds a device
that is not another wave generator as the most similar. As the
SMC equally weights functions that exist in the device and
functions that do not exist in the device, it is able to find devices
similar even if they do not have a lot of functions in common.
Specifically, if the devices both have a low number of functions
or flows and at least some of them are overlapping, they can
still be considered similar. In contrast, the Jaccard coefficient
requires that the functions and flows be present in both devices
and match. In general, vector measures are more successful at
identifying devices that are in the same category (e.g., finding
more wave generators if the design idea is a wave generator).
Not commenting on the actual usefulness of the out-of-category
device returned by the SMC, we can, however, suggest that
given only vector options, the Jaccard and cosine measures
would likely be better for exploiting, while the SMC might be
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better for exploring — in this case, suggesting other categories of
energy harvesters.

Network Measures

Previous literature on network measures has recommended
that the spectral distance is more useful for population compar-
ison (e.g. comparing two different functional models) while the
DeltaCon distance is more useful for dynamic comparison (e.g.
comparing a functional model that has changed over time for
reasons such as failure) [37]. The two network methods, even
though they both use the degree matrix, often return different
results. To compare the network methods, we can again look
at the group of wave generators (Columbia Power Manta Buoy,
Nova Energy Tuna Turbine, and Wing Wave Generator). When
using the Wing Wave Generator as an input, the DeltaCon dis-
tance finds another wave generator (Nova Energy Tuna Turbine)
to be the most similar, with a score of 0.75. The spectral dis-
tance results in a similarity score of 0.71, yet ranks the same
wave generator much lower for similarity (29th), compared to
all of the other devices (the high similarity score and low rank-
ing reflects the skew in the distribution of spectral similarity as
shown in Figure 2). The Wing Wave Generator is most simi-
lar to a wind device (Michigan U Piezo Flag) using the spectral
distance and another wave device (Nova Energy Tuna Turbine)
using the DeltaCon distance and GED. This example suggests
that the spectral distance has results that are more unexpected
and might lend itself better to design exploration, though they
may be less interpretable.
4.2 Implications for Design-by-Analogy
If analogical stimuli are provided to designers computation-
ally, the choice of similarity measure to retrieve the “right” stim-
ulus becomes important. Work in analogical design has implied
that stimuli from a “sweet spot” between near-field and far-field
help designers in the design process, but has also noted that the
meaning of near and far varies across the literature [5]. The re-
sults of this work indicate that the choice of similarity measure
impacts what types of systems are considered functionally sim-
ilar (and consequently, what might be returned as near or far).
For instance, measures that are better able to capture structural
similarity might return, as a near example, a result that another
measure (or a human designer) might consider a far example.

More broadly, some measures might be better suited to ei-
ther design exploitation or design exploration. A higher-level no-
tion of similarity can be useful to provide unintuitive but similar
examples that aid divergence during design exploration. How-
ever, it may not be useful when designers want to quickly transfer
aspects of an existing design that matches their needs to a new de-
sign. In the latter case, which can be important when converging
on an idea later in the design process, it might be better to have
a measure that returns designs that are more intuitively similar
(e.g. for energy harvesters, a within category device). Therefore,
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these results can lead to a better understanding of how specific
similarity measures can be leveraged for specific purposes within
engineering design.

For near (within domain) systems, the choice of similarity
measure is not as critical — most of the measures tend to result
in the same sets of systems returned as “similar.”” However, if
the functional model is represented as a network, very different
results can be found using the spectral distance. Therefore, a net-
work measure like the spectral measure may not perform partic-
ularly well to exploit already refined target designs, but could be
more useful than vector-based methods for design exploration.

A within-domain data set was useful for initial work be-
cause the designs had an aspect of known similarity. However,
there was variability present even though the group had similar
working principles. The question of how each similarity mea-
sure would handle out-of-domain systems is still unanswered. In
addition, mapping the functional models with no functions re-
peated, or no weighting of importance, is unlikely to work for a
very complex system that has most or all of the functions from
the functional basis. In this case, we refer to increasing com-
plexity as having an increasing number of function-flow pairs. A
more complex system can be mapped to a network as demon-
strated in previous work [29, 30] if more detail about function
repetition or importance is available. Even at the current level of
detail, the results indicate that the complexity of a system influ-
ences the output of design similarity for each measure. There-
fore, the choice of similarity measure might depend on whether
the desired task is for design exploitation or exploration, as well
as depend on the types of systems in question. Although further
research is needed, we propose that the similarity measures can
be interpreted as follows in the context of functional design rep-
resentations:

Simple matching coefficient (SMC). This measure can utilize
the absence of key function-flow pairs in systems as informa-
tion of their similarity. For this reason, it is highly coupled with
system complexity. The measure may work better for design ex-
ploitation in more complex systems, where the absence of spe-
cific functions or flows is meaningful. However, it may return
more unexpected results between less complex systems that have
some shared aspects, but also many function-flow pairs missing.

Jaccard similarity coefficient. The shared absence of function-
flow pairs between systems does not increase the similarity. Only
function-flow pairs that exist in at least one of the systems and
their positions contribute to the definition of similarity. The mea-
sure would likely then be useful for design exploitation in both
high and low complexity systems.

Cosine similarity. Similar to the Jaccard measure, function-flow
pairs that exist and match define cosine similarity, making it use-
ful for design exploitation in both high and low complexity sys-
tems.
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Graph edit distance (GED). This measure acts as a version of
the SMC for when the functions and flows are represented as a
network.

Spectral distance. Similarity depends on how the functions are
connected to flows (not on what the specific functions and flows
actually are). Systems where function-flow chains have the same
structure will be considered similar. The ability for the spectral
measure to convey a notion of “structural similarity” gives it a
higher potential for design exploration. This measure is the only
measure that can find different systems to be exactly the same,
and as such would not likely be used for design exploitation. It
does not seem particularly affected by the system’s complexity.

DeltaCon distance. Similarity depends primarily on the match-
ing of specific function-flow pairs (as in GED). However, the
structure of how the functions are connected to flows has an in-
fluence on similarity particularly as a function has many flows
connected to it or vice versa. Therefore, if a system is more com-
plex, the influence of the ”structural similarity” aspect is more
visible making the measure more suitable for design exploration.
Otherwise, the results are similar to GED.

Given these interpretations, potential directions for choosing a
similarity measure based on the application and system complex-
ity are shown qualitatively in Figure 5.

Better for More
Cosine Complex Systems
SMC A
GED
DeltaCon
Spectral

Jaccard

Better for _ |
Exploitation

» Better fo.r
Exploration

v
Better for Less
Complex Systems

FIGURE 5. Measures are shown based on proposed use scenarios.
Some measures are better suited for exploitation or exploration depend-
ing on the complexity of the systems being considered, and therefore
may be shown multiple times depending on the application.

The energy harvesters represent a set of systems of varying
complexity that might not have surface or form similarities, but
are related to each other functionally. In the case of utilizing
design-by-analogy for such systems, a computational approach
to finding the similarity between them might be particularly use-
ful. However, since it is possible to define the similarity between
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systems in several ways, the measure choice can lead to different
analogies that might influence a designer’s trajectory. Therefore,
to truly understand the use of specific similarity measures in the
context of design exploration or exploitation, it would also be
important to determine whether the types of results provided by
unexplored network-based distances, like the spectral distance,
would be useful to designers in practice. Would the measures be
retrieving examples that are “too far” or just right?

5 Conclusion

An empirical analysis of different similarity measures to de-
termine the similarity of functional models (mapped as a vector
or a network) indicated that the choice of measure can signifi-
cantly affect which designs were returned as similar to a target
design. The use of a set of functional models from within the
same technological domain suggests that the different measures
captured varying aspects of similarity. The analysis found net-
work measures to be a potentially viable alternative to vector
measures, depending on the design context; this is particularly
relevant to determining near vs. far analogical stimuli and aiding
in design exploitation vs. exploration. This work is a step to-
ward understanding which similarity measures should be used in
different design relevant contexts. Though only tested on func-
tional models in the present study, the results imply the need to
carefully consider the choice of similarity metric in research that
requires a measurement of design similarity, regardless of the de-
sign representation.
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APPENDIX A Categorization of Energy Harvesting Devices

Category

Systems

Inductive

Piezoelectric

Wind

Ocean-current/Wave

Solar

Thermal

Hybrid

Perpetuum FSH/C

Enocean Eco 100

Clarkson U Prototype
Michigan U PFIG

U Texas Prototype

Seiko Kinetic Watch

AA Battery Harvester

Socket

Kinetic Flashlight

MIDE Volture

Bistable Buckling Harvester
Heel-impact Shoe Harvester
Innowattech Road/Rail

Piezo Backpack Straps

U Texas Prototype
WindTamer

Leviathan

Enviro Energies

Four Seasons

Humdinger Wind Belt
Michigan U Piezo Flag

Nova Energy Tuna Turbine
Columbia Power Manta Buoy
Wing Wave Generator

Solar Heat Engine w/ Mirrors
Tracking System

Inflatable Mat

Big Belly Trash Compactor
Transparent Film on Window
Seiko Solar Watch

Seiko Thermic Watch
Enocean ECT 310 Perpetuum
Micropelt TE-power Probe
Micropelt TE-Power Ring
Micropelt STM-PEM

Solar Powered Sterling Engine
Solar/Wind Streetlamp
Kinesis Wind/Solar

Hymini Wind/Solar Crank
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APPENDIX B List of Functions and Flows

Functions | Flows
Separate Solid
Distribute | Human
Import Gas
Export Liquid
Transfer Human Energy
Guide Mechanical Energy
Couple - Rotational Mechanical Energy
Mix - Translational Mechanical Energy
Actuate - Vibrational Mechanical Energy
Regulate | Pneumatic Energy
Change Hydraulic Energy
Stop Light Energy
Convert Electrical Energy
Store Magnetic Energy
Supply Thermal Energy
Sense Status
Indicate Control
Process
Stabilize
Secure
Position
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