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Despite increased efforts to improve the quality of early-stage concepts, re-
search has found that engineers often do not select the best designs available. 
Unnecessary time and money are spent when lower-performing concepts are 
selected and pursued within engineering design. This research studies the 
design strategies engineers utilize in completing a multi-objective concept 
selection task and their influence on design performance over task duration. 
Fifty-seven participants explored a design space containing 21 alternatives 
and gathered additional information about a subset of these alternatives 
through limited testing before submitting a final decision. Performance was 
measured via a quantified success rate, an experimental value developed in 
this work. Strategies such as isolating design parameters and prioritizing pa-
rameters improved design performance. In conclusion, there are clear strat-
egies that engineers and designers benefit from using to guide their decision 
process. Future work will consider how these strategies are utilized within 
traditional concept selection methods. 

Introduction  

Concept selection is a critical phase in the engineering design process that 
significantly impacts later stages such as testing, development, and final de-
liverables [1]. After a problem is defined, engineers brainstorm possible so-
lutions, usually via words and sketches. Then engineers must compare con-
cepts and decide which concept(s) to select to advance to later stages in the 
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design process. While the selected concept may not become the final design, 
features or functions of the concept may appear in the final solution [2]. 

The design research community seeks to increase innovation and crea-
tivity in the design process through early-stage design by assisting engineers 
and designers in improving their innovative and creative potential in concept 
generation [3,4]. Despite these increased initiatives resulting in more inno-
vative or creative ideas, research has identified that engineers do not always 
select the best designs available instead of opting for more feasible solutions 
[5–8]. This tension serves as the motivation behind this research, which in-
vestigates the concept selection dynamics behind the sequential decisions 
made in this phase to understand how designers select less optimal concepts. 

How designers select a concept can be formal using decision matrices 
or mechanical design principles [9–11] or informal without using such tools 
relying on intuition or a gut feeling [12]. A designer’s final concept assess-
ment could be captured in Pugh matrices as scores or weighting, but this 
tool/method does not capture the order of assessment attributes or the influ-
ence of exploration of prior designs on future design considerations. The 
order of assessment provides rich design data used to extract design strate-
gies. Concept selection is a dynamic process composed of a series of se-
quential decisions influencing one another [13–15]. This research investi-
gates the strategies designers use in the concept selection process and how 
they influence design outcomes (i.e., quantifiable design performance). The 
primary research question is, what concept selection strategies positively in-
fluence design outcomes? 

Background  

The motivation behind this research and relevant literature are discussed 
further in the following three sections. Selecting design concepts highlights 
why this research focuses on this stage in the engineering design process. 
Concept selection as a series of sequential decisions introduces a process 
approach in which nuances in design behavior can emerge for this study. 
Design strategies that influence design performance feature both positive 
and negative impacts known decision-making strategies have on design out-
comes. 

Selecting design concepts 
Evaluating a concept is a crucial stage that converges on fewer concepts than 
initially generated [1]. Uncertainties associated with each design add to the 
difficulty of this stage. Designers usually must consider multiple design 
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criteria, often criteria that contradict one another. Due to this stage’s im-
portance in engineering design, many methods and tools are available to as-
sist decision-makers. Tools include but are not limited to decision matrices, 
analytic hierarchy processes, uncertainty models, economic models, optimi-
zation concepts, and heuristics [16]. Decision matrices vary in their effec-
tiveness [10,17]. A Pugh decision matrix lists the concepts to be evaluated, 
then the design team (individually or as a whole) rates the concepts on a 
series of qualities the team deems most important [9,12]. Although the tool 
focuses on objectivity, literature has identified cases where team members 
have selected criteria to rate that would help confirm and support their pre-
ferred concepts [18]. Multi-attribute decision-making methods result in dif-
ferent outcomes [19]. Therefore, this research is not concerned with why 
designers select the method or approach but instead focuses on designers’ 
observable actions throughout the concept selection process. 

Concept selection is a series of sequential decisions 
Engineering design is an interactive and cyclic process composed of diver-
gent and convergent stages [16,20]. Concept selection should not be viewed 
as a single final decision but rather a process in which design alternatives 
are considered before the ultimate decision is made. Concept selection can 
be decomposed into multiple subsections of information gathering, evaluat-
ing the designs, weighing the evidence, and deciding between alternatives. 
Selecting a concept is generally convergent behavior; however, exploration 
and consideration of design alternatives align with divergent behaviors [20]. 
Taking a process approach in concept selection enables nuances in a design 
strategy to emerge that prior design research has not yet considered. 

A design strategy consists of a string of design actions. This paper de-
fines design actions as observable and quantifiable steps such as viewing a 
design, testing a design, or submitting a design. Participants can learn se-
quences based on the information provided or design actions possible, and 
this learning may or may not be conscious [21]. Due to the parameter 
tradeoffs and ability to test designs in this research study, optimization tech-
niques [22–24] and interdependencies (coupled decisions) [25] on viewing 
and testing prior designs are explored. The use of design strategies in pa-
rameter tradeoff problems seeks to minimize or maximize a function. In this 
study, maximizing design performance means selecting a design with a high 
success rate. 

Moreover, the design research community seeks to capture sequential 
decision behavior from human designers to transfer to computational agents. 
Research from McComb et al. identified decision sequences as beneficial to 
designers via Markov chains [14] which aligns with prior sequence learning 
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work [21]. Another paper from McComb et al. mined process heuristics via 
Hidden Markov models that differed by design performance [15]. The first 
paper identifies that participants used operation sequences but did not go 
into the types of operational sequences and how they relate to engineering 
principles [14]. The second paper further identifies differences among de-
signers based on performance; however, hidden states in this model lack an 
understanding of what those states are and why they result in specific design 
actions [15]. Similar work from Raina et al. focused on extracting design 
heuristics and transferring them to computational agents [26–28]. While 
successful in creating designs of similar performance or better, the agent 
takes design actions that will likely improve the design, but the rationale or 
motivation behind those actions remains unclear. 

The purpose behind the three strategies of interest, listed in Table 1, is 
to generalize the findings beyond this specific design task. The complex na-
ture of engineering design decisions often means the results and discussions 
in design research are unique to the type of design challenge. By taking a 
process approach focusing on systematic strategies, we highlight the design 
behavior that comes naturally to designers and its impact on design perfor-
mance over task duration. These intuitive strategies, if present in this task 
without the explicit instruction to use a design method, should also appear 
in design processes where concept selection methods and tools are used. The 
strategies defined in this study are inspired by the literature on optimization 
as a concept selection method [23,16,22] and early observations from [29]. 
In previous observations, participants mentioned identifying the parameters 
that can be tuned (isolating variables) and focusing on one parameter at a 
time (prioritizing variables). The term shifting between variables refers to 
the shift in focus from one parameter to another. Such transitions within a 
process are similar to Atman et al. [30], but instead of engineers switching 
through engineering design phases, micro phases in concept selection focus 
on how engineers engage with the tunable variables. 

Design strategies that influence design performance 

Not only does this research identify and describe design strategies within 
concept selection, but it aims to determine the impact such strategies have 
on design performance. Prior work showed that designers’ navigation 
through the design space and testing procedures impacted design perfor-
mance [29]. Confirmation bias, ownership bias, or anchoring/design fixation 
are known biases influencing engineering design [18,31,32]. By moving be-
yond a single action, insight regarding how designers approach design prob-
lems and engage in the concept selection process could help uncover how 
biases unfold into design actions. The key to comparing design strategies 
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relies on comparing design performance for a design task. Evaluation meth-
ods might use human raters to evaluate designs [3,4] or use strength-to-
weight ratio calculations. Objective measures based on experimental data 
are used in this study, not just for the final design submitted, but this measure 
assessed a participant’s real-time performance over task duration.  

Once the impact of design strategies on design outcomes is known, there 
are two common approaches to incorporating them into design practice. One 
might identify beneficial strategies, then teach those strategies to other de-
signers—learn from what others do well. Alternatively, the research could 
identify pitfalls to avoid and bring these common issues to the attention of 
others—learn from others’ mistakes. With the development of computa-
tional tools to assist in the design process, agents also need to learn how to 
design. Agents may learn human preferences or design approaches from tra-
ditional engineering principles; however, there is merit in understanding 
how designers design without structured methods or tools [26,27]. Often 
such approaches use datasets from human designers to extract design strat-
egies and biases that naturally occur. By understanding the influence design 
strategies have on the solution space and consequentially design perfor-
mance, nudges can be used, for example, to help a designer pursue a partic-
ular strategy that causes them to increase their search space when a high 
degree of design fixation is detected. 

Table 1 Concept selection strategies of interest and descriptions of the design be-
havior rooted in preliminary work [29]. 

Strategy Explanation 
Isolating variables Adjusting one variable at a time while holding all 

other parameters constant such as single parameter 
tuning. Multiparameter tuning does not fall into iso-
lating variables [22,29]. 

Prioritizing variables Focusing on a given variable throughout a portion of 
the decision-making process is measured by the num-
ber of sequential steps per one variable [22,29]. 

Shifting between variables Transitioning focus from one parameter to another is 
measured by the number of transitions [22,29]. 

Methods  

This study identifies strategies used in the concept-selection process and 
their influence on design performance. Data from a human subject study 
carried out by the authors of this paper was analyzed to explore these 
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patterns for insights into decision-making behavior [29]. The study asked 
participants to submit a design for a gripper surface for a dishwashing robot. 

Concept selection task 
Participants were instructed to submit one design to move forward to pro-
duction, the next step in the fictional robotics team’s design process. They 
were tasked with designing a gripper surface for a robotic arm, as shown in 
Fig. 1. The dishwashing robot uses a grasper in a wet and slippery environ-
ment due to dish soap. A design’s success was determined by the robot’s 
success rate in grasping a range of dishware. The designer has 21 alterna-
tives to select among which are combinations of seven surface geometries 
and three material hardness options. After clicking on a design, as noted in 
Fig. 2, a screen displayed its datasheet where participants could test that de-
sign which revealed the testing result. The success rate is based on empirical 
friction data scaled proportionally between zero and 100%. Each participant 
had ten minutes to complete the task with the option to test up to five designs 
to see corresponding success rates (design performance). No specific con-
cept selection method or tool was provided. 

 
Fig. 1 Diagram of the design challenge to show participants the gripper surface and 
its interaction mechanism with the grasper on the dishwashing robot. 

Participants 
A total of 68 participants were recruited for the design study using a call for 
participation at the University of California, Berkeley. Participants were 
compensated $10 for their participation for 30 minutes. A bonus of up to 
$20 was offered contingent on task performance. Participants were screened 
and required to be 18 years or older with engineering or design experience 
to participate in the research study. Experience ranged from completing a 
single design class upwards to over ten years as an engineer in industry (0-
4 years, 34, 5-9 years, 21, and 10+ years, 2). Participant demographics in-
cluded undergraduate, graduate, and working professionals with engineer-
ing and science backgrounds. Data from 57 participants (30 men, 26 women, 
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and one non-binary person) was used for data analysis. Data from 11 partic-
ipants were removed due to a lack of following instructions and equipment 
errors. 

Research Design 
The experiment took approximately 30-minutes and consisted of two parts: 
the design task and a post-task survey. For the scope of this research, only 
the design task is of interest, and thus information regarding the post-task 
survey is not mentioned but can be found in [29]. Colleagues provided the 
21 gripper surface designs (seven geometries and three material hardness 
options) and experimental data based on a slippery environment [33]. Those 
friction values, not shown to participants, were then translated into success 
rates between 0 and 100%. A five-test limit was set to mimic real-life con-
straints in the design process, where a limited number of designs can be 
tested due to time or financial constraints. Preliminary experiments found 
that few participants converged on a “good” design with less than five tests. 

 
Fig. 2 The design actions of interest are represented as actions 1-3, and nmax indi-
cates the number of times said action could occur. (a) Each of the seven geometries 
(shown as images) branched out to include a soft, medium, and hard version. Click-
ing one of the branched-out designs opened a datasheet (b) for that design. A test 
displayed a design’s success rate (c). 

As shown in Fig. 2, participants interacted with an interface for the de-
sign task portion, which displayed the consent form, task instructions, and 
possible design options. The interface collected the time and number of tests 
but left it to the participant to monitor due to interface constraints. However, 
this decision to self-monitor was aligned with what engineers and designers 
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experience outside of controlled studies, where they are expected to meet 
deadlines and stay within budget. Although the robotic gripper design could 
have been optimized using a computer program, this predefined solution 
space removed researcher subjectivity in classifying a participant’s design 
actions and performance that alternative experimental setups may have in-
troduced (e.g., having participants sketch their designs followed by re-
searchers rating designs using rubrics).  

Data Analysis 
Design actions defined in this study were steps traveled within the solution 
space, and objective methods such as the success rate were used to evaluate 
a design’s performance [18]. Data was collected from the Figma website 
using Maze.co, a clickstream collection platform. Each screen a participant 
visited was recorded, and each participant’s duration, screenId, and sequen-
tial path were exported. Participant groupings were determined using design 
performance measured by the design’s success rate. 

Decision strategies of isolating, prioritizing, and shifting parameters 
were coded using the sequential path per participant. Isolating parameters 
means using single parameter design actions. An increase, decrease, or hold 
was determined for each parameter, hardness, and geometry. A single pa-
rameter move means one parameter was held constant while the other 
moved. The percentage of single parameter moves quantifies the isolating 
variables strategy, as measured using the number of single parameter moves 
over the sum of single and multiparameter moves. Prioritizing parameters 
highlights a participant’s focus on a given variable throughout the task du-
ration. Percent prioritization was computed as the number of sequential 
steps where one variable is the focus over the number of single parameter 
design actions. Shifting between parameters identifies the number of transi-
tions where a participant’s focus shifts from one parameter to another. Each 
transition count was coded when a multiparameter move occurred or when 
the parameter held constant changed within single parameter moves. The 
percentage of transitions was computed using the total number of transitions 
over the total number of design actions per participant. 

Results 

The strategies of interest utilized by participants in the design task include 
1) isolating variables, 2) prioritizing variables, and 3) shifting between var-
iables. These strategies were extracted from 2451 total design actions where 
participants took as few as 20 and upwards of 162 design actions (M = 44) 
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and viewed between four and 18 unique concepts (M = 7). First, the rela-
tionship between these strategies and design performance is presented, fol-
lowed by the differences between strategy usage among high and low-per-
forming designers. 

Isolating parameters and prioritizing parameters improved design per-
formance 
Isolating variables or single parameter tuning are the most identifiable and 
likely to improve design outcomes. Single parameter tuning means adjusting 
one variable at a time while holding the other parameter constant (e.g., 
changing geometry while holding material hardness constant). Spearman’s 
rank correlation tests were carried out between the percent of single param-
eter moves and the success rate achieved. The percentage of single parame-
ter moves was coded as the number of single parameter classifications over 
the sum of single and multiparameter classifications. The results show a 
moderate correlation, as shown in Fig. 3, which is statistically significant (rs 
= 0.32, p <.05). Therefore, participants who engaged in a higher number of 
single parameter moves were more likely to have improved performance. 
When participants did not use single parameter moves, they made multipa-
rameter design actions which means they adjusted both parameters simulta-
neously. By completing multiparameter moves, participants jumped around 
the design space and could not understand the influence each variable had 
on design performance when conducting tests. 

 
Fig. 3 The percentage of single parameter moves and corresponding success rate 
percentage. Each participant is represented by one data point. The shaded region 
represents a 95% confidence interval for the regression line. 

Prioritizing variables was a second design strategy shown to result in 
improved outcomes. Prioritizing variables means focusing on a given vari-
able throughout a portion of the decision-making process as measured by 
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the number of sequential steps per one variable. Moreover, single parameter 
design actions or isolating variables need to occur for one variable to be held 
constant. Spearman’s rank correlation tests were carried out between the 
percent of variable prioritization and the success rate achieved. Percent pri-
oritization is the sum of moves that were single parameter and held constant 
between a series of sequential steps over the total number of design actions. 
A participant with high prioritization carried out primarily single parameter 
moves and, of those moves, held hardness constant while adjusting geome-
try. The results show a moderate correlation, as shown in Fig. 4, which is 
statistically significant (rs = 0.44, p <.01). 

 
Fig. 4 The percentage of max feature prioritization and corresponding success rate 
percentage. Each participant is represented by one data point. The shaded region 
represents a 95% confidence interval for the regression line. 

Shifting between variables means a participant’s focus shifted from one 
parameter to another as measured by the number of transitions. Thus, a tran-
sition was coded as any time a multiparameter move occurred or when the 
parameter held constant changed within single parameter moves. The per-
centage of transitions is the number of transitions over the total number of 
design actions. Spearman’s rank correlation tests were carried out between 
the percent of transitions and the success rate achieved. Fewer transitions 
indicate increased focus on a given parameter. A lower percentage is ex-
pected for participants engaged in single parameter moves and prioritized 
one variable for a longer duration. A higher percentage of transitions is ex-
pected for participants who only engaged in multiparameter moves or who 
changed the parameter of focus multiple times throughout the task duration 
(i.e., a participant who engaged in single parameter moves but only held a 
parameter constant for a brief number of steps and instead kept changing the 
tuning parameter). The results show a very weak negative correlation, as 
shown in Fig. 5, which is not statistically significant (rs = -0.17, p =.20). 
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Fig. 5 The percentage of transitions and corresponding success rate percentage. 
Each participant is represented by one data point. The shaded region represents a 
95% confidence interval for the regression line.  

High and low performing designers differed in their design strategies 
Participant groupings were determined using design outcomes measured by 
the design’s success rate. Participants in the high-performing category 
(n=19) achieved the best possible design (96% success rate). The average-
performing category achieved success rates above 50%, excluding the opti-
mal design (n=20), while those in the low-performing category achieved 
success rates under 50% (n=18). 

Figure 6 shows the mean usage for the three strategies (isolating, prior-
itizing, and shifting) for high and low-performing designers, as indicated in 
light and dark blue, respectively. The y-axis represents the number of design 
actions categorized as a given design strategy over total design actions as a 
percentage. Design actions were categorized as isolating variables when 
only one variable was adjusted while holding the other parameter constant 
as measured by the number of single parameter moves. Design actions were 
characterized as prioritizing variables when a participant focused on a given 
variable throughout a portion of the decision-making process as measured 
by the maximum number of sequential steps per variable. Design actions 
were labeled as shifting between variables when the focus transitioned from 
one parameter to another as measured by the number of transitions.  

For isolating variables, there was a 15% statistical difference across us-
age for high and low performers (Mhigh = 81% and Mlow = 66%; Mann–Whit-
ney U = 92.5, n1 = 19, n2 = 18, p < .05 two-tailed). Expanding beyond the 
ability to isolate variables, to feature prioritization there was a 23% statisti-
cal difference across usage between the groups (Mhigh = 68% and Mlow = 
44%; Mann–Whitney U = 72.5, n1 = 19, n2 = 18, p < .05 two-tailed). Lastly, 
regarding the frequency of transitioning between variables, high performers 
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had -11% difference in usage than low performers (Mhigh = 62% and Mlow = 
73%) which was not statistically significant (Mann–Whitney U = 118, n1 = 
19, n2 = 18, p = .11 two-tailed). High performing participants had an in-
creased usage in isolating and prioritizing parameters. No conclusion can be 
drawn regarding the shifting between variables strategy. 

 
Fig. 6 Three strategies of interest and their corresponding mean percentage as indi-
cated by the diamond shape (% of parameter isolation, % of parameter prioritiza-
tion, and % of parameter transitions) split by high and low-performing designers. 

Since high and low performers differed in their ability to isolate design 
parameters over task duration, an additional analysis was carried out using 
Markov models to predict the probability of strategy used when considering 
the most recent design action. A first-order Markov model from the behav-
ioral data was utilized to identify transition probabilities of moving from one 
state to another. The transition probabilities help explain the behavior ob-
served and the likelihood of a specific sequence of decisions would occur. 
The three-state Markov approach is a simplified version of the initial 21 
states explored (e.g., one for each design). With a 21-state model, entire path 
sequences could be generated for t timesteps, and their corresponding suc-
cess rate could be computed. The three-state Markov model aims to gener-
alize design actions beyond the specific robotic gripper surface design task 
via single parameter (SP), multiparameter (MP), and testing (TEST) design 
actions.  

Figure 7 demonstrates that high performers focus more heavily on single 
parameter moves (i.e., isolating design parameters). In the few instances that 
high performers use multiparameter design actions, they do so primarily be-
fore (.90) and after (.21) a test action. Based on the behavioral data, when 
high performers conduct a multiparameter move, they have a .10 chance of 
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conducting another multiparameter move, a zero chance of conducting a sin-
gle parameter move, or a .90 chance of running a test. Alternatively, low-
performing participants engage more with both single and multiparameter 
design actions. The transition probabilities to and from a non-test state are 
within a range of .19 and .27, as noted in Fig. 7. Across both group groups, 
they each have a higher probability of moving into a single parameter state 
after conducting a test and a higher probability of conducting a test when in 
a single or multiparameter state. 

 
Fig. 7 Transition probabilities of a first-order Markov model split by design perfor-
mance. 

Discussion 

Three design strategies (isolating, prioritizing, and shifting between param-
eters) were investigated within concept selection, and their influence on de-
sign performance was determined. Fifty-seven participants were tasked with 
selecting the best gripper surface design for a dishwashing robot. Design 
performance for each of the predefined set of 21 concepts was based on ex-
perimental data. To answer the main research question, the findings show 
that the two strategies (isolating and prioritizing parameters) positively in-
fluenced design outcomes, while shifting between parameters did not sig-
nificantly influence outcomes. These distinctions in design behavior reveal 
the nuances and complexity of an individual designer’s approach and are 
discussed below. 

Case Study: Strategy usage for a high-performing participant 
Figure 8 displays the three strategies of interest by visualizing the two tun-
able parameters and corresponding success rates for a high-performing par-
ticipant over the task duration. In this design challenge, participants needed 
to recognize that geometry and hardness were the two tunable parameters 
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and adjust them accordingly to find the optimal design. Initially, the partic-
ipant switched between designs randomly, alternating quickly between pa-
rameter one (geometry), both parameters, and parameter two (hardness), in-
dicating the participant had not yet figured out which parameters to isolate. 
After the first test was conducted, the participant focused on tuning geome-
try (prioritization) for most of the remaining time and only varied hardness 
three times (shifting). Once the shift occurred, this was the point in which a 
participant isolated variables and switched to prioritizing variables. Taken 
together, in Fig. 8a, the participant starts at the middle range for geometry 
and incrementally increases geometry while holding hardness constant, as 
shown in Fig. 8b. Visualizing design behavior over task duration indicates 
that high-performing participants employed a high percentage of single pa-
rameter moves and engaged in a high degree of prioritization of parameters. 
In a scenario where a participant had a low single parameter usage percent-
age, their moves for both parameters would vary at every step with fluctu-
ating y-values.  

 
Fig. 8 Design parameter tuning over task duration for a high-performing participant. 
The five dashed blue vertical lines represent the moment the participant conducted 
a test, enabling the success rate to become known for that design. (a) Parameter 1 – 
Geometry over task duration. (b) Parameter 2 – Hardness over task duration. (c) The 
success rate as a percentage over the task duration. The success rate is known to the 
researcher for each design explored. A participant can learn the success rate only 
after conducting a test for a maximum of five designs. 
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Implications of key results 
Performing a high percentage of single parameter moves did not guarantee 
success. Instead, the findings suggest that using single parameter moves and 
making incremental adjustments to one parameter for multiple steps did in-
crease the likelihood of success. Across the 57 participants, all utilized sin-
gle parameter moves. However, the data shows that only seven participants 
used single parameter moves exclusively, and the lowest percentage of sin-
gle parameter usage was 25%. Of the participants engaged in high single 
parameter move usage, their success rates were not all in the highest per-
forming category. The participant who utilized single parameter moves al-
most entirely yet performed poorly could be explained by the large leaps 
between designs they took or lack of order in testing. For example, a partic-
ipant who used single parameter moves but adjusted one parameter in large 
leaps rather than incremental changes, or a participant who changed which 
parameter they held constant (e.g., switching from parameter one to the 
other while holding the opposite parameter constant). The strategies partic-
ipants used resemble techniques commonly used in algorithms for optimi-
zation problems, such as agent search strategies or methods to maximize 
objectives [16,22,34]. Thus, improving design outcomes relied on a combi-
nation of systematic strategies rather than random walk approaches. 

Humans are naturally uneasy with uncertainty and desire order [35,36]. 
These patterns of sequential design actions emerged, regardless of whether 
such patterns were conscious [21]. Participants’ usage for design strategies 
could be explained by the brain’s intrinsic desire to reduce cognitive load 
whenever possible (i.e., use heuristics or biases). Cognitive load means the 
mental effort needed to learn new information [37]. Research suggests that 
improved design performance might be caused by a decreased cognitive 
load [38,39]. Kahneman’s systems one and two could help explain the dif-
ferences observed in the speed of decision making and the degree of mental 
effort used by participants [40]. Fast and strategic actions might be associ-
ated with system one for a participant who has increased design expertise or 
a participant who is simply guessing throughout the task [41]. In contrast, 
participants who took longer between decisions might be utilizing system 
two, which requires more effort due to their unfamiliarity with the problem 
type and time limit imposed. 

The cognitive load of single parameter moves should be smaller than 
multiparameter moves since the information for the next design explored 
shares a parameter with the previous design. Multiparameter moves do not 
share either geometry or hardness. Participants then integrated the infor-
mation received and established relationships between design actions and 
knowledge (e.g., identifying which design parameters were relevant, 
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determining the relationship between each parameter and success rate). En-
gaging in the design strategies studied, the cognitive effort required was 
likely decreased, thus making key relationships easier to identify and inte-
grate into the design process. 

Contrary to what one might expect, participants did not mention tradi-
tional concept selection methods or tools such as weighting or ranking of 
designs via decision matrices in their open-end responses regarding their 
decision process [9,16,42,43]. All participants stated they had completed a 
design course, and most have participated in design project-based teams in 
a course or industry that likely included standardized decision processes. 
Research from López-Mesa and Bylund that studied concept selection 
method usage inside a company identified that five of the 22 interviewees 
used none or one method in their concept selection process; The lack of use 
was explained by the roles of the engineers working in late-stage design and 
an engineer who is known to be ‘against’ methods [12]. Neither of these 
explanations appeared in the participants’ open-ended responses in this 
study. Perhaps the results reveal the underlying building blocks (e.g., design 
strategies) designers use within standard concept selection methods. The 
varying percentage of design strategies used may help explain why standard 
concept selection methods have varying outcomes in design performance. 

The task duration, problem type, or presentation of concepts for the ro-
botic gripper task may have limited participants’ concept selection methods 
and tools. Ten minutes was used based on research that found designers 
spend a relatively short time deciding between concepts (between three and 
eight minutes) [30]. An extended timeframe might have led participants to 
use commonly taught concept selection methods or develop more complex 
design strategies. The presentation of designs may have also influenced the 
strategies designers used, which might have differed from physical proto-
types, excel spreadsheets, or an interactive prototype that could have param-
eters altered via a sliding tool. Note that future work could extract additional 
strategies using methods (i.e., varying the levels of analysis concerning time 
and transitions between design activities/stages) from Atman et al. that ex-
plored the nuances between novice and expert designers’ engagement with 
different aspects of the design process [30,44]. 

Incorporating design strategies of interest into practice 
There is a need to assist human designers and computational design agents 
in the concept selection phase [26,27]. Human designers could benefit from 
understanding what they do well and not so well. Depending on the purpose 
of a computational agent, one might want to mimic human design behavior 
for modeling, alternatively outperform human designers, or build a 
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collaborative computational tool that collaborates with human designers. 
Regardless of the application, understanding human design behavior is nec-
essary to integrate design strategies into practice. 

The two strategies of isolating and prioritizing parameters could be in-
tegrated into computational models to describe, explain, or predict design 
behavior. The Markov models generated in the results section could be 
transferred for computational modeling of design behavior, as previous re-
search has shown possible [14,15,27]. Fictional design data could be gener-
ated with a transition matrix of state-state probabilities, enabling compari-
sons between computational agents and human designers. Future analyses 
in this application might consider the speed or rate of exploration as another 
measure in systematic strategies. Alternatively, the two strategies of interest 
could be integrated into engineering education. 

Figure 8 shows the designs a participant explored over time as split by 
parameter with corresponding success rates. Visualizing design behavior for 
evaluation or assessment could be one use case; however, visualizing a de-
signer’s learnings or providing real-time design feedback might be more 
beneficial. This visualization could show a student’s or employee’s deci-
sions in solving a design challenge. Students and practicing engineers could 
see the sequence of decisions they performed at a high level and pinpoint 
when they were and were not systematic in the design process. Not system-
atic, meaning design strategies of interest are not captured. One should note 
that not using one of the strategies of interest does not mean no strategies 
were used but more likely that they are using strategies not captured in this 
research design. Future work might explore the use of design behavior dash-
boards to highlight efficient and less efficient portions and explore how this 
tool impacts design outcomes and designer experience. 

Conclusion 

Engineers routinely select lower-rated concepts despite higher-rated alter-
natives within the solution space. Prior research has studied the influence of 
specific concept selection methods and tools that influence final decisions; 
however, the focus of this research investigated the concept selection phase 
as a series of sequential decisions in which strategies for exploring and eval-
uating designs emerge. Not only do the findings identify strategies partici-
pants used in the robotic gripper design task but also how strategies in iso-
lating and prioritizing design parameters positively influenced design 
outcomes. High-performing designers were found to engage more with iso-
lating and prioritizing design parameters than low-performing designers. 
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While a select number of strategies were highlighted in this study, there are 
likely additional decisions strategies worth studying, such as degrees of tran-
sitions and time spent on design parameters. Isolating and prioritizing design 
components are likely used within other concept selection methods and tools 
such as Pugh matrices, where designers need to assess multiple concepts. 
How an engineer explores and evaluates design alternatives will provide 
further insight into how engineers select lower-performing designs despite 
using standardized selection methods. Design researchers should evaluate 
how these design strategies show up within standard concept selection meth-
ods, not just which strategies or methods designers use, but work to under-
stand their influence on design outcomes. 
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