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Engineers often do not select the best designs available to them. This research investigates
whether specific design actions impact performance in a design exploration task and
whether the reasoning factors underpinning these actions can be inferred directly. This
study uses objective performance metrics to quantitatively evaluate multiple dimensions
of design behavior and cognition within concept selection. Fifty-six participants were
tasked with identifying an optimal design for the gripping contact of a dishwashing
robot. Results identified that specific design actions correlated with improved design perfor-
mance, including exploring fewer design alternatives and isolating parameters. We found
that reasoning factors stated by participants did not accurately map onto their observed
actions and did not correlate with task performance. Implications related to future compu-
tational design support tools are discussed. [DOI: 10.1115/1.4064414]
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1 Introduction
Improving final design outcomes is a shared goal within the

design research community. While efforts aim to increase creativity
and innovation in early-stage concept generation [1,2], recent find-
ings from the design community have indicated that engineers do
not always select the best available, instead opting for more feasible
solutions [3–6]. This challenge serves as the initial motivation for
this research, which aims to advance knowledge regarding the
decision-making processes involved in concept selection in engi-
neering design. Concept selection is a crucial phase that signifi-
cantly impacts later stages, such as testing, development, and
final deliverables [7]. After creating a set of design alternatives,
engineers systematically narrow the options by evaluating and
deciding which one(s) to further develop and implement. Although
the selected concept may not become the final design, its features
or functions of the concept may appear in the final solution [8].
Therefore, selecting an appropriate concept early on is vital to
avoid negatively impacting project resources and stakeholders.
We investigate concept selection dynamics (design actions and

reasoning factors) to explain what design behaviors and cognitive
processes might contribute to selecting less optimal concepts
(design performance). Design actions and reasoning factors are
the focus variables due to their significance in design process doc-
umentation. In engineering education and in industry, engineers
need to explain their design decisions often in a written report or
oral presentation. In these mediums, what an engineer writes or

says is believed to reflect the justifications behind their final
design solution and its features. Note that the terms designers and
engineers are used interchangeably throughout this paper.
We define design actions as the observable and quantifiable steps

a designer takes within the task. For example, design actions might
include changing between two distinct concepts, a bean bag to a
chair with four legs, or modifying features like armrests or no arm-
rests. We define reasoning factors as the rationale, motivation, and
preferences designers use to guide their design actions. For the chair
example, reasoning factors include each option’s aesthetic charac-
teristics or financial considerations. We define performance as the
measure of the product’s performance, not the performance of the
design process or team (e.g., speed of decisions). For the chair
example, design performance might include comfort ratings or
max weight capacity. An underlying assumption guiding this
work is that the design concepts considered vary in design perfor-
mance—making some better relative to others.
The experimental design used in this study quantitatively

explores how design behavior (actions) and design cognition (rea-
soning) impact design outcomes (performance) within a resource-
constrained concept selection task. Quantitative studies on design
behavior usually code design actions that are unique to the design-
er’s solutions. Design actions can be infinite (e.g., material change,
color, weight, and size). As used in this study, a simplified number
of actions increases the power of quantitative and statistical
methods. McComb et al. and Neroni et al. used truss design tasks
and tracked design actions over time [9–12]. They also tracked
system attributes (e.g., weight and costs) as their participants
solved a design task. We tracked progress over time and asked
our participants to select one concept to move forward to
production.
Previous design research studies on reasoning often use qualita-

tive analyses [13,14]. Design reasoning factors can be infinite, often
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captured via think-aloud protocols [15,16]. However, think-aloud
methods are primarily qualitative, with sample sizes that are not sta-
tistically representative and create challenges in investigating cau-
sality. In order to quantitatively evaluate think-aloud methods,
such an approach would be rather time-consuming and labor-
intensive for the large sample size necessary. Additionally, objec-
tive performance measures are used rather than human raters to
evaluate concept performance. We acknowledge that this research
design presents limitations since other actions, reasoning factors,
and performance measures could be used. However, this quantita-
tive research design that uses constrained design actions and reason-
ing factors enables larger sample sizes and reproducibility that a
qualitative approach lacks.
A two-part human subject study, a design task and a post-task

survey, gathered information on design actions, reasoning factors,
and performance from over 50 participants. The two research ques-
tions are:

RQ1: What design actions and reasoning factors lead to improved
design performance?

RQ2: How might reasoning factors be inferred directly from design
actions?

By evaluating multiple dimensions of concept selection, we expect
to identify trends between each element. If clear trends are identified,
extracting design reasoning information from design action data
could be possible. The ability to infer reasoning from actions or
actions from reasoning would reduce the amount of data necessary
and enable researchers to extract this knowledge from incomplete
data sources (i.e., missing data for actions or factors).
These expected outcomes are based on the assumption that design

performance differences (dependent variable) can be explained by
specific design actions or reasoning factors (independent variables).
For example, designers who design a chair using free-body diagrams
and equations might navigate a design challenge differently than
engineers relying on their intuition from years of industry experi-
ence. Different approaches reveal insights into learning style or
topic familiarity [17,18]. Several designers who solve a task in a
similar manner may indicate a heuristic or bias. Implications for
this work include identifying which design actions or reasoning
factors to suggest designers use or avoid when engaging in design.
Moreover, design researchers may consider using variations of this
research design to quantitatively collect multiple dimensions of
design behavior—in concept selection or other design stages.

2 Background
The following sections define concept selection, standardmethods

and tools, and related research that informed the specific design
actions and reasoning factors explored in this paper. The term
concept selection, as used in this paper, can be defined as a conver-
gent phase in the design process inwhich design alternatives are eval-
uated and prioritized to determine which one(s) will be further
developed and implemented. Selecting a concept is an executive
function that influences design outcomes [19]. This systematic nar-
rowing of design alternatives can be done individually or as a
group. Research notes that all designers use some method to
choose among concepts regardless of whether the method is explic-
itly stated [7]. By examining actions, reasoning, and performance
in a single design study, understanding the relationships between
elements could be realized and leveraged to inform design theory,
practice, and education.

2.1 Concept SelectionMethods and Tools. Due to the impor-
tance of concept selection in engineering design, many methods
and tools are available to assist decision-makers. Tools include
decision matrices, analytic hierarchy processes, uncertainty
models, economic models, optimization concepts, and heuristics
that could be leveraged individually or as a group [20]. Designers

might select a concept using a range of formal (e.g., decision matri-
ces and mechanical design principles) [21–23] or informal methods
(e.g., intuition and gut feeling) [24]. A designer’s final concept
assessment could be captured as scores or weighting in Pugh matri-
ces. However, this tool does not capture the entire evaluation
process or the reasoning factors behind the decisions leading to
the final design submission.
Moreover, concept selection tools such as decision matrices vary

in effectiveness [21,25]. For example, a Pugh matrix is a decision-
making tool where a design team (individually or as a whole) scores
each concept alternative on a series of dimensions. These dimen-
sions are usually what the team deems most important [22,24].
Although the tool focuses on objectivity, literature has identified
cases where team members have selected criteria to rate to help
confirm and build support for concepts of their preferences (i.e.,
confirmation bias) [26]. To reduce bias from concept selection
methods and tools, none were provided to participants in this
study. To better understand how these convergent decisions
impact product performance, this work breaks down the concept
selection phase into design behavior (actions) and design cognition
(reasoning factors).

2.2 Design Actions. We define design actions as the observ-
able and quantifiable steps in design. The participant’s constrained
set of design actions in this study include viewing, testing, or sub-
mitting a design. A design strategy consists of a string of design
actions. The three strategies of interest include design space explo-
ration, parameter isolation, and parameter prioritization. The design
strategies of interest are based on optimization literature [20,27,28]
and early observations from design actions and reasoning factors
[29]. In previous observations, participants mentioned identifying
the parameters that can be tuned (isolating variables) and focusing
on one parameter at a time (prioritizing variables). These con-
strained design actions and strategies aim to generalize the findings
beyond this specific design task.
Characterizing design behavior via design actions and strategies

enables insights regarding heuristics or behavior comparisons
across groups of designers. For example, work from Atman et al.
[30] characterized the different stages in design and compared
student and expert designers. Research has shown that designers
can learn sequences based on the information provided or design
actions possible, and this learning may or may not be conscious
[31]. Due to the parameter tradeoffs and ability to test designs
in this research study, participants may use optimization tech-
niques [27,28,32] and interdependencies (coupled decisions) [33].
Design strategies in parameter tradeoff problems seek to minimize
or maximize a function. In this study, participants can maximize
design outcomes by selecting a design with a high success rate.
Design actions and strategies serve as concrete evidence to
explain how designers engage in a design task.
Moreover, the design research community seeks to capture

sequential decision behavior from human designers to transfer to
computational design agents to improve design performance.
Research from McComb et al. identified beneficial decision
sequences from designer behavior via Markov chains [9], aligning
with prior sequence learning work [31]. In another paper, McComb
et al. mined process heuristics via hidden Markov models that dif-
fered by design performance [10]. The first paper identified that
participants used operation sequences but did not describe the oper-
ational sequences in detail or how they relate to engineering knowl-
edge [9]. In the second paper, a gap remains in understanding why
designers used the heuristics [10]. Similar work from Raina et al.
focused on extracting design heuristics and transferring them to
computational agents [34–36]. The computational agent created
designs of similar performance or better, but the reasoning factors
behind those actions remained unclear.

2.3 Reasoning Factors. A design reasoning factor, in this
paper, is the explanation or consideration behind a design action.
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Design reasoning factors are not necessarily observable. Instead, an
engineer must explicitly communicate their reasoning factor(s),
usually verbally or in written form (i.e., self-reported). The
breadth of reasons varies from concrete, such as prototype feed-
back, to more abstract means, such as personal preferences or
values [7]. Time and costs, independently and in combination,
affect the design process and outcomes [37]. Design literature and
protocol studies have also found that testing and previous experi-
ences influence design solutions [24,38]. Designers with more
years of experience tend to rely more heavily on these hands-on
experiences than those with less experience who rely more on
external design knowledge [13,39].
While reasoning factors in design are often captured by

think-aloud protocols or interviews, research in psychology and
management has shown that specific cognitive dimensions can be
studied without explicitly collecting this information from partici-
pants. For example, research from Taylor et al. showed that innova-
tive behavior (tool usage) in crows could also be explained by
complex cognitive processes separate from learning mechanisms
[40]. Robert Mitchell et al. found that differences in erratic decision-
making processes could be explained by managers’ self-reported
perceptions of environmental factors (e.g., hostility) [41]. Within
design research, Mao et al. were able to map specific cognitive pro-
cesses to free-hand sketching actions in the design ideation phase
[42]. In line with the approaches observed in previous research
examining reasoning, our study combines open-ended and
closed-ended responses to balance capturing rich, qualitative
insights into participants’ reasoning and ensuring a systematic anal-
ysis of specific reasoning factors.
Participants provided open-ended responses to explain their

reasoning. They were also asked to rate the importance that a con-
strained set of reasoning factors (tests, guesses, principles, previ-
ous experience, datasheet, time, finances, and aesthetics) had on
their decision-making. The factors asked in this study were
inspired by prior findings from think-aloud protocols or inter-
views. The initial draft contained over 50 possible factors that
were then reduced by grouping similar factors until the eight
most relevant factors remained. Participants also had an opportu-
nity to expand on the following three factors: principles, datasheet
information, and previous experience. By linking multiple ele-
ments within concept selection, we expect to find specific reason-
ing factors to predict design performance. Thus, by identifying a
subset of beneficial reasoning factors, suggestions regarding
their usage could be recommended and integrated into design
support systems.

3 Materials and Methods
This study examines design actions (e.g., viewing, testing, and

selecting concepts) and reasoning factors (e.g., engineering princi-
ples and previous experiences) to understand their influence on
one another and a participant’s performance within the concept
selection stage of engineering design. Data from a human subject
study were analyzed to explore these patterns for insights into
design behavior and cognition. Participants were tasked with sub-
mitting a design for a gripper surface for a dishwashing robot.
This section outlines the participants, materials, and procedures
used.

3.1 Participants. Sixty-eight participants were recruited for
the design study using a call for participation at a University in Cal-
ifornia. Participants were compensated $10 for their participation
for 30 min. Participants were offered a bonus of up to $20 contin-
gent on task outcomes. Participants were screened and required to
be 18 years or older with engineering or design experience to par-
ticipate in the research study. No explicit domain expertise was
required since the task could leverage different dimensions of engi-
neering knowledge. For example, knowledge from mechanics,
materials science, or design intuition could be used to solve the
problem. Experience ranged from completing a single design
class upwards to over ten years as an engineer in industry. Partici-
pant demographics included undergraduate, graduate, and working
professionals with engineering and science backgrounds. All partic-
ipants read, agreed, and signed a consent form. Data from 56 partic-
ipants (29 men, 26 women, and one non-binary person) were used
for data analysis. Such a diverse sample population should increase
generalizability beyond one type of designer. Statistical tests were
used to determine that experience, domain knowledge, or demo-
graphic factors did not confound performance. Data from 11 partic-
ipants were removed due to a lack of following instructions
(e.g., not completing the post-task survey) and equipment errors.
One participant was removed since their total design actions
exceeded three standard deviations above the mean.

3.2 Materials. For this study, participants were instructed to
submit one design to move forward to production, the next step
in the fictional robotics team’s design process. Participants were
tasked with designing a gripper surface for a robotic arm, as
shown in Fig. 1. The dishwashing robot uses the grasper in a wet
and slippery environment due to dish soap. The participant was

Fig. 1 Screenshot of the design instructions shown to participants. The screen includes
information on the context, task, and a diagramof the gripper surface and its interactionmech-
anism with the grasper on the dishwashing robot [43].
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presented with 21 solutions, a combination of seven surface geom-
etries and three material hardness options. After selecting a design,
a screen displayed its datasheet where participants could test that
design to reveal its success rate, as noted in Fig. 2. A design’s
success rate was determined by the robot’s ability to successfully
grasp a range of dishware. Each participant had 10 min to complete
the task. There was no time limit on reading instructions and under-
standing the design task. Participants could view all 21 designs, test
up to five designs to see corresponding success rates (design out-
comes), and submit one design. A test can be done at any point
in the process for any of the 21 possible designs. Participants
could submit any design, not necessarily a design that was tested.
No specific concept selection method or tool was provided.
The task leverages empirical testing data and design alternatives

based on a real haptic robotics design challenge. Our study focused
on concept selection; thus, no concept generation phase was used.
The decision to exclude concept generation reduced the possibility
of ownership bias and design fixation that might have occurred had
participants created their own solutions. In concept selection, partic-
ipants use design information to evaluate and compare the alterna-
tives. Information about each concept was conveyed via the
datasheets, including the number of features, material, hardness,
radius, contact area, weight, cost, and manufacturing time (exact
values are noted in Table 6). Each item included would be known
in an actual design process. Specific attributes distinguished the
concepts from one another (e.g., geometry or hardness), while

others were simply a matter of fact (e.g., materials and costs).
Each participant may interpret the importance of each attribute dif-
ferently. Hence, we explicitly instructed participants to select the
design with the best success rate for this task.

3.2.1 Design Concepts and Success Rates Based on Empirical
Data. The 21 concepts were provided by colleagues [43]. This
section details the process those colleagues underwent and how
the information they provided was used in this concept selection
study. The 21 concepts were designed, prototyped, and tested by
researchers investigating soft skins for robotic grasping applications
in real-world environments such as kitchens where objects are
covered in viscous fluids (i.e., soap, oil, and water). Increased fric-
tion helps improve grasping behavior. The researchers character-
ized the friction of soft skins of various circular features with the
same total nominal contact area. Friction for each concept was mea-
sured in dry and lubricated environments (oil). Only the lubricated
values are relevant to our fictional design task. Their experimental
design positioned the soft skin with a weight on top and used a
string and force gauge to measure friction for ten trials for each
design [43]. The researchers also carried out a robotic gripper grab-
bing a plate in an oil bath, verifying that the lubricated friction coef-
ficients correspond to a practical application.
Based on ten trials, the experimental kinetic friction coefficients

(µk) ranged from 0.1743 to 3.8239. For our study, these values were
translated from zero to four, where 0 represented 0%, and four

Fig. 2 The process flow of one design viewed and tested. (a) Main screen showing the seven geometry options. (b) After select-
ing geometry, a soft, medium, and hardmaterial option is shown. Clicking one of the branched-out designs opens (c) a datasheet
for that design. Clicking “test” displays (d ) a design’s success rate.
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represented 100%. The resulting fictional success rates ranged from
4.7% to 95.6%. Figure 6 shows a visual representation of the design
space, characterized by geometry as the x-axis, hardness as the
y-axis, and the success rate (as noted by the degree of shading).
We opted against having values range from true zero to 100%
because other designs are likely to outperform or underperform rel-
ative to those in the limited dataset provided. The experimental
values were theoretically explained by bending stiffness (using
the radius and height of each cylindrical feature) [43]. While design-
ing for lubricated environments was not intuitive like dry environ-
ments, clear trends were present for friction/success rates across the
geometry and hardness parameters. Our colleague’s research
inspired the decision to use a robotic gripper task in a dishwashing
environment. While they used a grasping task in oil, the fictional
task involved a slippery environment for a dishwashing robot
grabbing a range of dishware rather than a single plate. The fictional
test we described resembles commonly used tests in robotics
dexterous grasping applications.

3.3 Procedure. The experiment took approximately 30 min
and consisted of two parts: the design task and a post-task survey,
as noted in Fig. 3. Colleagues provided the 21 gripper surface
designs and corresponding success rates based on experimental fric-
tion data in a slippery environment [43]. The five-test limit was set
to mimic real-life constraints in the design process, where a limited
number of designs can be tested due to time or financial constraints.
Preliminary experiments found that few participants converged on a
“good” design with less than five tests. The 10-min time limit was
used since time is limited in real-world scenarios. To account for the
fact that they are stepping into the design after concept generation,
participants had unlimited time to familiarize themselves with the
task instructions and datasheet information before starting the
timer. In the experimental data, the average task completion time
was four and a half minutes.
Participants interacted with a graphical user interface for the

design task portion, which displayed the consent form, task instruc-
tions, and possible design options (Fig. 2). The interface collected
the time and number of tests but left it to the participant to
monitor due to interface constraints. However, this decision to self-
monitor was aligned with what engineers and designers experience
outside of controlled studies, where they are expected to meet dead-
lines and stay within budget. Although the robotic gripper design
could have been optimized using a computer program, this pre-
defined solution space removed researcher subjectivity in classify-
ing a participant’s design actions and performance that alternative
experimental setups may have introduced (e.g., having participants
sketch their designs followed by researchers rating designs using
rubrics). The likelihood of designer fixation and ownership bias
was also reduced since the participants were not attached to their
own ideas or pre-existing designs.

The post-task survey (Supplemental Material available on the
ASME Digital Collection), hosted on Qualtrics, had closed-ended
and open-ended questions about their design actions used and rea-
soning factors considered. The first three questions were open-
ended, asking participants to explain how they arrived at their
final design, their initial approach, and how that approach
changed. Afterward, participants were asked to rate and rank the
eight high-level reasoning factors (tests, guesses, principles, previ-
ous experience, datasheet, time, financial, and aesthetics) inspired
by the prior literature that influenced their concept selection
process. After listing and grouping similar reasoning factors from
engineering design literature, the authors selected the eight most rel-
evant factors. Any factors rated as any degree of influence were then
carried forward and provided in a list for participants to rank. An
additional question was asked to participants who rated the data-
sheet, engineering principles, and/or previous experience as
having any degree of influence. These follow-up questions were
asked to clarify the principles, datasheet information, or experiences
participants leveraged. Since the other factors were less ambiguous,
no follow-up questions were asked.

3.4 Data Analysis. Design performance was evaluated by
success rate, an objective metric based on experimental friction
data. Participant groupings were determined using design perfor-
mance (i.e., success rate) for the final design submitted. Participant
groupings enabled comparisons across design behavior and cogni-
tion between low- and high-performing designers. Participants in
the high-performing category (n= 19) achieved the best possible
design (95% success rate). The average-performing category
achieved success rates above 50%, excluding the optimal design
(n= 19), while those in the low-performing category achieved
success rates under 50% (n= 18). The boundaries for high,
average, and low categories are based on maintaining a similar
sample size for each category. Additionally, the design success
rates are based on empirically collected data and were not evenly
distributed from 0 to 100.
Design actions defined in this study were steps traveled within

the solution space. Design action data were collected from the
Figma website using Maze.co, a clickstream collection platform.
Each screen a participant visited was recorded, and each partici-
pant’s duration, screenId, and sequential path were exported. By
the nature of the experimental design, each participant’s decision
was linked to a corresponding success rate and moment in time.
Design space explored was defined as the number of designs
visited over the 21 total options (i.e., total design space). The geom-
etries ranged from 1 to 55, while the urethane material ranged from
30 to 80 A shore hardness. Each design represented an equal pro-
portion of the design space.
Decision strategies of isolating and prioritizing parameters were

coded using the sequential path per participant, as described in
Table 1. An increase, decrease, or hold was determined for each
parameter, hardness, and geometry. A single parameter (SP)
action meant one parameter was held constant while the other

Fig. 3 Overview of explanatory research design. Participants
first completed the design task in which their actions and out-
comes were recorded. Afterward, a survey collected the reason-
ing behind their actions via open- and closed-ended questions.

Table 1 Concept selection strategies of interest and
descriptions of the design behavior [29,44]

Strategy Explanation

Isolating
variables

Adjusting one variable at a time while holding all other
parameters constant such as single parameter tuning
[29]. Measured as the number of single parameter
moves over the total number of single and
multiparameter moves

Prioritizing
variables

Focusing on a given variable throughout a portion of
the decision-making process [30]. Measured by the
number of sequential single parameter moves per one
variable over the total number of moves
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was adjusted. A participant’s percentage of single parameter actions
quantified the isolating variables strategy, as measured using the
number of single parameter actions over the sum of single and mul-
tiparameter (MP) actions. Prioritizing parameters highlighted a par-
ticipant’s focus on a given variable throughout the task duration.
Percent prioritization was computed as the number of sequential
steps where one variable was the focus over the number of single
parameter design actions.
Reasoning factors were collected with a post-task survey

(Supplemental Material available on the ASME Digital
Collection). The survey asked a mix of multiple-choice and open-
ended questions. Ratings and rankings of the reasoning factors
were computed, and statistical tests were used to determine the find-
ings’ significance. Spearman’s correlations were run to assess rela-
tionships between factors considered and their influence on a
participant’s performance. Mann–Whitney statistical tests were
carried out when comparing the performance of groups to one
another. Four open-ended questions, three regarding design pro-
cesses and one regarding prior experience, were qualitatively ana-
lyzed. The three questions about how they solved the problem,
their initial approach, and how that approach changed were primar-
ily used to describe an individual’s observed behavior. Those qual-
itative insights also inspired the design strategies of interest
(isolating and prioritizing variables). Meanwhile, the question on
previous experiences was analyzed using thematic analysis (result-
ing in the reduced categories of hands-on and knowledge-based
experience). The experience responses were reviewed and coded
by a single researcher with prior experience in engineering design
research and design practice. Afterward, each open-ended response
and theme were visualized using an online whiteboard to help iden-
tify new links between the coded themes.

4 Results
This research aims to determine what design actions and reason-

ing factors designers might consider using to improve their design
performance. The results identified that design actions such as
exploring less of the design space and utilizing two design strategies
correlated with improved design performance. These strategies
were extracted from 2290 total design actions. Participants took
as few as 20 actions up to 96 actions (M= 42, SD= 18) and
viewed as few as four designs up to 14 unique designs (M= 7).
The relative importance of specific reasoning factors guiding partic-
ipants’ design behavior is presented. The factors were not correlated
with design performance. The impacts on design outcomes are pre-
sented as correlations (based on success rate as a percentage) and
comparisons (between low- and high-performing groups). Results
show that high- and low-performing designers differed in their
actions and strategies.

4.1 Influence of Design Actions on Design Outcomes.
Exploring a larger percentage of the design space did not correlate
with improved design outcomes. Design space exploration was
computed as a percentage of the total designs assessed over 21
design alternatives. Each design represents about 5% of the
design space. Design space exploration ranged from 19% to 67%,
as noted in Fig. 4. A statistically significant and moderate negative
correlation was observed between the design space explored and the
final design’s success rate (rs(54)=−0.35, p< 0.01). High- and low-
performing designers differed in the percentage of design space
explored (Mhigh= 27.3% and Mlow= 33.7%; Mann–Whitney U=
101.5, n1= 19, n2= 18, p< 0.05 two-tailed).
Isolating variables or single parameter tuning was the most iden-

tifiable strategy likely to improve design outcomes. Single parame-
ter tuning means adjusting one variable at a time while holding the
other parameter constant (e.g., changing geometry while holding
material hardness constant). Spearman’s rank correlation tests
were carried out between the percent of single parameter actions
and the success rate achieved. The percentage of single parameter

actions was coded as the number of single parameter classifications
over the sum of single and multiparameter classifications. The
results show a moderate correlation, Fig. 5(a), which is statistically
significant (rs(54)= 0.33, p< 0.05). Therefore, participants who
engaged in more single parameter actions were more likely to
have improved performance. When participants did not use single
parameter actions, they performed multiparameter design actions,
simultaneously adjusting both parameters. Multiparameter actions
highlight how participants jumped around the design space. As a
result, participants could be less likely to understand each variable’s
influence on design performance. For the isolating variables strat-
egy, there was a 15% statistically significant difference across
usage for high- and low-performers (Mhigh= 81% and Mlow=
66%; Mann–Whitney U= 92.5, n1= 19, n2= 18, p< 0.05 two-
tailed).
Prioritizing variables was the second design strategy shown to

improve outcomes. Prioritizing variables means focusing on a
given variable throughout the decision-making process as measured
by the number of sequential steps per variable. For one variable to
be held constant, isolating variables or single parameter tuning must
occur. Spearman’s rank correlation tests were carried out between
the percent of variable prioritization and the success rate achieved.
Percent prioritization is the sum of actions that are single parameter
and hold parameters constant between a series of sequential steps
over the total number of design actions. A participant with high pri-
oritization carried out primarily single parameter actions and, of
those actions, held hardness constant while adjusting geometry.
The results show a moderate correlation, Fig. 5(b), which is statis-
tically significant (rs(54)= 0.43, p< 0.01). For the prioritizing var-
iables strategy, there was a 23% statistically significant difference
across usage between the groups (Mhigh= 68% and Mlow= 44%;
Mann–Whitney U= 72.5, n1= 19, n2= 18, p< 0.05 two-tailed).

4.2 Influence of Design Reasoning Factors on Design
Outcomes. The post-task survey collected design reasoning
factors via closed and open-ended questions (questions included
as Supplemental Materials available in the Supplemental
Materials on the ASME Digital Collection). The ratings in Tables
2–4 use a 5-point Likert scale that ranges from not at all important
(1-rating) to a great deal (5-rating). Table 2 shows the average
ratings for the eight primary factors of interest in response to the
question, “Please rate the impact that the following factors had on
your design decision.”Open-ended responses were coded using the-
matic analysis. The strategies of interest (isolating and prioritizing
variables) were extracted from three questions about design
approaches. Hands-on versus knowledge-based experiences were
identified from one question about previous experience. Spearman’s
correlational tests were conducted between participants’ ratings of

Fig. 4 Scatterplot of the percentage of design space explored
(number of datasheets explored of the 21 possible datasheets)
and the success rate of the final design submitted. The shaded
region represents a 95% confidence interval for the regression
line. Each participant is represented as a single data point.
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factors (e.g., tests) and their final success rate (total of eight tests).
None of the findings were statistically significant. We rejected the
hypothesis that design reasoning factors correlate with design per-
formance. Additional analyses regarding task information, engi-
neering/design principles, and previous experience are presented
in the following sections.

Task information relates to knowledge acquired via the design
task: tests and datasheets. Test importance was rated highly across
all participants. Only two participants rated tests as having moderate
or little influence on their decision process. Forty-six participants
rated the datasheet as having any degree of influence and were
asked a follow-up question, “Please rate the impact that the following
information from the datasheet had on your design decision.” Table 3
shows the mean results of the datasheet attributes. None of the data-
sheet attributes were correlated with design outcomes.
Engineering knowledge means foundational theories or knowl-

edge one might acquire by attending a lecture or reading a text-
book. A follow-up survey question was asked to the 55
participants who rated engineering/design principles as having
any degree of influence. Participants were asked to rate the influ-
ence of five topics in engineering/design that guided their design-
making. The question shown read, “Please rate the impact that the
following principles had on your design decision.” Table 4 shows
the mean results for the group. Spearman’s correlation tests were
run between the importance ratings and the corresponding success
rates of the respondents. None of the correlations were statistically
significant. Two additional questions asked participants to rate
their knowledge of materials and robotics. Spearman’s correlation
tests between participant rating of their knowledge and design out-
comes were also not statistically significant, and neither were the
Mann–Whitney tests run between the high- and low-performing
designers.
Participants rated the previous experience factors a 2.84 on

average importance, as noted in Table 2. An additional open-ended
question was asked to the 44 participants who rated previous expe-
rience as having any degree of influence in their decision-making
process. Two aspects of participants’ responses stood out during
the thematic analysis. First, the relevance of the experience they ref-
erenced (hands-on versus not hands-on), and second, the rhetoric
participants used when communicating experience. Initial codes
used to group participant experiences included robotics, friction,
course knowledge, vague language, and dishwashing experience.
Afterward, focused coding categorized each participant’s previous
experience response as hands-on, knowledge-based, or vague, as
shown in Table 5. Hands-on design experiences included creating
grippers for medical or robotics applications, and others mentioned
using friction devices for various applications (e.g., clamps and
doorstops). Other hands-on previous experiences alluded to memo-
ries of themselves dishwashing or analyses of dishwashing gloves.
The theme of knowledge-based experiences referenced information
from courses or research (e.g., contact area and biomimicry). The
information was similar to the engineering and design principles
factors from Table 4. The last theme of vague statements

Fig. 5 (a) The percentage of isolating variables and corresponding success rate percentage. (b) The percentage of prioritizing
variables and corresponding success rate percentage. The shaded region represents a 95% confidence interval for the regres-
sion line. Each participant is represented by one data point.

Table 2 Factors rated by importance

Factor Mean rating Standard error

Tests 4.80 0.074
Guess 3.75 0.133
Principles 3.23 0.125
Previous experience 2.84 0.176
Datasheet 2.66 0.166
Time 2.30 0.171
Financial 1.43 0.088
Aesthetics 1.43 0.101

Table 3 Datasheet attributes rated by importance

Attribute Mean rating Standard error

Success rate 4.87 0.080
Hardness 4.26 0.130
Geometry 3.59 0.198
Contact area 3.17 0.197
Radius 2.67 0.204
Image 2.63 0.207
Material 2.41 0.198
Manufacturing 1.85 0.139
Cost 1.80 0.138
Weight 1.50 0.107

Table 4 Engineering/design principles rated by importance

Principle Mean rating Standard error

Friction 4.07 0.151
Materials 3.04 0.174
Mechanics 3.04 0.182
Robotics 2.15 0.163
Manufacturing 2.04 0.142
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categorized experiences that did not contain enough information
regarding a specific experience and thus were not compared to
the other groupings. When comparing the hands-on and knowledge-
based groups, no statistically significant difference exists between
their success rates (Mhands-on= 59% and Mknowledge= 73%; Mann–
Whitney U= 105, n1= 11, n2= 28, p= 0.13 two-tailed).

5 Discussion
Concept selection dynamics were defined in this study as design

actions, reasoning factors, and outcomes. Using a design task fol-
lowed by a post-task survey, three main findings were identified.
First, this research showed that specific design actions were corre-
lated with improved performance and were statistically significant.
Next, no trend between design reasoning factors and performance
was found. Lastly, linking design actions, reasoning factors, and
outcomes showed that multiple reasoning factors motivated the
same design action. The following sections outline the implications
of the findings, future work to fill in gaps in reasoning, and the influ-
ence of design rationale’s explainability on human–artificial intelli-
gence (AI) collaboration.

5.1 What Design Actions and Reasoning Factors Lead
to Improved Design Performance?

5.1.1 Design Actions. Design space exploration, parameter
isolation, and prioritization were three design behaviors that corre-
lated with design performance. Isolating and prioritizing variables
were positively correlated with performance, and both correlations
were statistically significant (rs(54)= 0.33, p< 0.05 and rs(54)=
0.43, p< 0.01, respectively). Design space exploration was nega-
tively correlated with performance (rs(54)=−0.35, p< 0.01).
Additional statistical tests (i.e., Mann–Whitney U test) evaluated
whether each design strategy usage differed across low- and high-
performing designers. All three tests were statistically significant,
as shown in Sec. 4.1, meaning design behavior was unlikely due
to chance. Our research adds to the existing literature that identifies
and extracts beneficial design behavior [34,35]. For example, the
extracted behaviors can help human designers and computational
design agents select higher-performing designs in the concept selec-
tion phase. Future work may consider longer or more complex
concept selection tasks. Increasing length and complexity would
enrich the dataset for new insights regarding actions and strategies.
One might assume that a focused search strategy could be attrib-

uted to luck. While this may be true for a few participants, those
who tested the best design early on (either strategically or by
chance) still conducted all five tests. This additional testing could
be attributed to participants believing a design with a 100%
success rate could have existed. Even more surprising, a few partic-
ipants who tested the best design submitted a design for which they
had not tested. Strategic navigation of the solution space should
have quickly revealed the trend that the hard material option for
any given geometry was the best (see Table 6 or Fig. 6 for the
exact values), yet about 25% of participants submitted designs
with a soft or medium hardness. Open-ended explanations for
selecting a soft option noted an individual bias that softer items in
their personal experience should have better friction.

Nonetheless, based on the findings presented, human designers
could benefit from understanding what they are doing well and not
so well. This paper identified a few systematic design actions that cor-
related with improved performance. However, some participants
underperformed or overperformed relative to the line of best fit.
For example, in Fig. 5(b), a participant underperformed with a
success rate of under 25% despite a high strategy usage of over
75% for isolating variables. These varying results highlight the
human element of decision-making, which randomness, designer
preferences, or biases might help explain. In a separate paper, data
visualizations of individual design behavior (i.e., the two parameters,
geometry and hardness, and over task duration) can help designers
understand their concept selection dynamics [44]. Visualizations
can show when participants engage with useful heuristics or less
helpful biases such as anchoring or design fixation.

5.1.2 Reasoning Factors. Reasoning factors explored in this
study were not correlated with task performance. Instead, the
results provide insight into and quantify the relative influence that
each reasoning factor had on participants’ design processes. Table 2
shows the average ratings for the eight main factors. Tables 3 and
4 show the average ratings for the subfactors associated with data-
sheet and engineering principles, respectively. Table 5 shows the
main categories (hands-on, knowledge-based, and vague) extracted
from the open-ended responses of the previous experience factor.
While no trend between reasoning factors and performance was
found, some possible reasons this may have occurred are discussed
as well as the relevance of this finding in engineering.
Differences in design performance despite having the same rating

for a given factor can be explained by the differences in how partic-
ipants perceive and use the information. For example, two partici-
pants who each rated ‘tests’ as having a great deal of influence on
their design process could be explained both by participants who
used testing strategically (isolating or prioritizing variables) or
relied purely on a guess-and-check approach. These findings align
with behavioral economics and psychology research, which finds
that people’s actions are inconsistent with what they say or think
they are doing [45,46]. This incongruence may have occurred due
to biases (e.g., social desirability, hindsight, and confirmation).
While other domains have found human behavior to misalign with
their explanations (e.g., purchase behavior), this finding in an
engineering-specific domain is notable since stakeholders assume
design reasoning in reports and presentations represent the truth.
Therefore, if self-reported reasoning does not explain a designer’s

actions, this raises concerns about the validity of a designer’s docu-
mented reasoning. Their reasoning could also indicate other problems
regarding communication ability or credibility as designers (e.g., they
know they need to test designs strategically but cannot realize this
through their actions). The lack of detail in open-ended questions
(i.e., previous experience and approaches) was surprising since engi-
neers and designers are expected to state their rationales and processes
in design reports or industry documentation. The responses were not
particularly short. Instead, the responses were vague and non-specific,
resembling linguistic patterns coded (e.g., affective decisions, hedges,
and boosters) in research by Krishnakumar et al. [47]. Effective com-
munication of the design rationales behind design decisions is crucial
to clearly understanding a designer’s process of evaluating and

Table 5 Themes from previous experience coded segments

Previous experience
code Representative coded segment Frequency

Hands-on I used to be a dishwasher and having multiple gripping locations made it less likely to slip, which motivated the
assumption of using more appendages in the design

28

Knowledge-based From previous experience in my manufacturing class, I learned that a minimum of 3 contact points is important to
establish a datum so I applied that to here as a datum needs to hold an object in place and so did the product

11

Vague I feel that it should work better with a larger number of features 5
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selecting a design amongst multiple alternatives [48]. Several design
support systems and tools have been developed to aid designers in
this process [49,50]. Perhaps one of those frameworks could be
used in future studies (e.g., feature, process, mechanistic, and
systematic).
Future work that simultaneously investigates design actions and

reasoning factors could explore alternatives to how reasoning
factors are captured and represented. Conducting a more detailed
investigation into one of the reasoning factors could split partici-
pants into conditions and manipulate the influence a given factor
should have on their design processes. Iterating on this study
design might include periodic check-ins during the design task in
which participants document their design reasoning factors—
explicitly asking the same survey questions, perhaps at three
points, early, middle, and end of the task duration. A downfall of
this method might bias participants to consider the factors shown
even if they had not considered them previously. Alternatively, a
semi-structured interview with participants could help fill in the
gaps when participants did not communicate reasoning factors
clearly in the free responses or when follow-up questions would
be beneficial in understanding their reasoning processes. Further-
more, using a knowledge graph for analyses could provide further
insight into how the reasoning factors designers use are interconnec-
ted [51]. Knowledge graphs are networks of data that store informa-
tion and illustrate relationships within the system, such as TechNet
[52]. Research shows the importance of knowledge graphs in trans-
ferring and organizing knowledge within organizations and can
offer insight into designer intent and innovation [53–55].

5.2 How Might Reasoning Factors Be Inferred
Directly From Design Actions?. This research sought to provide
a more holistic understanding of the dynamic cognitive processes
designers engage in during the concept selection phase. Design
actions, reasoning factors, and outcomes were examined using a
pre-defined solution space. The research design enabled direct com-
parisons across participants. Despite having these three directly
comparable elements, design reasoning factors remain the least
understood and least connected to design outcomes. Design reason-
ing factors and design actions were linked, but multiple reasoning
factors were linked to a single design action. Similarly, a single rea-
soning factor was linked to multiple design actions. Gaining a
shared understanding of the types of reasoning factors that partici-
pants use when carrying out a sequence of design actions could be
beneficial for designers and their teams.
Thematic analysis was used to code the first three open-ended

survey questions. The themes that emerged in conjunction with lit-
erature on engineering optimization approaches inspired the design
strategies of isolating and prioritizing design parameters. On
average, participants rated geometry and hardness as the most influ-
ential datasheet pieces of information in their decision process
(Table 2). Design reasoning explicitly stating isolating and prioritiz-
ing variables was quickly extracted from design actions. There were
nuances in the way participants executed such design actions.
Several participants stated they wanted to explore the possible solu-
tions, but how they explored the design space differed. Some started
at the extremes, while others only explored a focused area. The
designs considered could be characterized by their search or explo-
ration behaviors and influenced by the interface’s capabilities
[38,56,57]. Despite grouping designers based on similar reasoning
considerations, the breadth of design actions was vast.
Once design actions were concretely identified, hypotheses

regarding their reasoning factors were made. The results found
some reasoning factors to align with what design actions partici-
pants executed—for example, exploring less of the design space
correlated with improved outcomes, which could be explained by
increased domain knowledge in robotics or materials science [58].
Moreover, exploring less of the design space could also be
explained by luck in selecting a closer starting position to the
optimal design. We understand that design reasoning factors in

this paper were captured after completing the design task. Future
studies should explore sequential design reasoning factors similar
to what this paper has done with design actions. Breaking down
the design process into smaller segments might enable directly
linking salient reasoning factors with design actions and showcase
how they influence one another over task duration.

5.3 Implications in Engineering Design. The design problem
used in this study aligns with scenarios in late-stage conceptual
design or early embodiment design. The pre-defined solution space
is mostly smooth, although the larger solution space (i.e., alternative
materials or geometries) may be characterized as “rugged” since best
practices for designing robotic graspers in lubricated environments
are not well understood. Therefore, the researchers who provided
this empirical dataset already made a series of decisions before pro-
totyping and testing these designs [43]. Fundamentally, deciding
which designs to test and select are complex decisions, such that
these are decisions that involve multiple factors, uncertainties, and
tradeoffs. The scope of the task captures these decision-making char-
acteristics while also considering human capabilities (attention, per-
ception, and memory). Increasing the number of parameters causes
much higher cognitive loads, and problem-solving at that scale
may be beyond that of human capabilities (e.g., requires computa-
tional approaches) [59]. Thus, the problem structure used aligns
with the scale of decision-making that humans make in late-stage
conceptual design or early embodiment design.
The main implications of these findings for engineering design lie

in improving design processes for human designers. This study
shows that design actions could be extracted, and some actions pos-
itively impact design outcomes. Once the impact on design perfor-
mance for each strategy is validated, we could suggest that
designers use them in practice. Each strategy can be taught in
design education or practice as a heuristic for concept selection.
Design heuristics have previously been successfully extracted and
taught for concept generation [60,61]. Using a given strategy can
be visualized to help designers understand when they are and are
not engaging with the strategies. The visualization could be an
assessment tool to check whether the strategy was correctly
learned and applied, similar to how gradient maps help show opti-
mization approaches in finding global minima [28]. One of the
future applications of these findings relates to collaborations
between humans and AI in engineering design tasks.
As outlined in prior work, the two strategies of isolating and prior-

itizing parameters can be incorporated into computational models
that describe, explain, or predict engineering design behavior [44].
The results show that design rationales were not always clear, and
instead, multiple design rationales motivated similar design actions.
By incorporating human designers’ rationale, a deeper understanding
that combines what the agents are doing, design actions, and why the
agents are doing so, design rationale, can help improve decision
support tools within engineering design [62–64]. Using design rea-
soning factors provides richer design recommendations than cur-
rently possible (simply imitating design actions).
Previous research has shown several advantages to introducing

AI design agents to assist human designers at various stages of
the engineering design process [65–68]. Research from Raina
et al. used deep learning to imitate human designers, where the
system performed just as well or outperformed human designers.
Current design support tools in development often mimic human
design decisions. The agent can learn and imitate behavior but
cannot articulate the motivation or evidence supporting the design-
er’s actions [34,35,69,70]. Das and Chernova showed that clear
rationale improved users’ ability to understand and accept an
agent’s recommendation, increasing task performance [71].
Designer confidence in these decision support tools depends on the

tool’s explainability—the ability to explain how the tool functions
[70]. Our study showed that various reasoning factors motivate
various design actions. Thus, we could expect a wide range of
human trust levels in an agent’s design recommendation. Previous
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research in autonomous vehicles showed that human trust in the
system was influenced by communication style and the level of infor-
mation provided [72]. Dong et al. showed that the logical framing
structure (i.e., abductive and deductive) significantly influenced
design decisions within human-to-human interactions [73]. Deductive
reasoning was more likely to cause human participants to reject pro-
posed designs. In contrast, abductive reasoning, commonly associ-
ated with creative processes, was more likely to cause human
participants to accept a design product or feature. Considering that
the structure of design reasoning was shown to influence design deci-
sions within human-to-human interactions [73], the structure used by
computational agents should influence design decisions within
human–AI interactions. While the findings in this paper showcase a
limited breadth of reasoning factors used, additional research might
want to better define the level of detail necessary to communicate
rationale or focus on select reasoning factors.

5.4 Limitations. While we leveraged an experimental design
that sought to capture observed design behavior and design cogni-
tion through reasoning factors, future studies should consider the
following adjustments to the task and data collection procedures.
Currently, the generalizability of the results is limited due to the
use of a constrained solution space based on empirically collected
data for one realistic design task [45]. Increasing sample sizes or
using multiple design tasks instead of one increases the generaliz-
ability of future studies. The design space could be more evenly
distributed (e.g., equal intervals between geometry) or more com-
prehensive (e.g., more than 21 concepts). When the space is
evenly distributed, it reduces the chances that specific designs are
underrepresented, and outliers are less likely to influence results.
We must acknowledge the inherent tradeoff between exploring

more of the design space and using more resources to create high-
fidelity prototypes. A solutions space that can be generated compu-
tationally may address this concern. Concerning the design space
explored, each design was assumed to be the same percentage of
the design space. Alternatively, had this not been equal, designs
of larger geometries would have covered a more significant percent-
age of the design space than smaller geometries. Future work should
carefully consider the creation and distribution of the design space.
Moreover, while self-reporting design reasoning is the standard

in industry and education (via oral presentations and technical
reports), improvements can be made to better study the impact of
reasoning factors on design performance. For example, creating dif-
ferent conditions in which participants are primed (subconsciously)
to consider one factor could enable more direct conclusions on the
influence that each factor has on design performance. Alternatively,
researchers could design a task where the degree of influence for a
given factor can be easily extracted from actions (e.g., quantifying
financial influence by the total cost of a submitted design).

6 Conclusion
This paper presents an empirical study examining multiple

dimensions of design activity (i.e., design actions, reasoning
factors, and performance) for a concept selection task. The experi-
mental design addressed a gap in prior research by quantitatively
comparing design actions, reasoning factors, and performance
simultaneously for over 50 participants. Using a robotic gripper
design problem as a test scenario, detailed design process data
from 56 participants were collected with a graphical user interface
and post-task survey. Results highlight specific design actions cor-
related with improved design performance, such as a focused search
strategy and isolating and prioritizing design parameters. Design
reasoning factors (the decision-making heuristics underpinning
observed behavior) were segmented into task-specific knowledge,
engineering knowledge, and previous experience. Although design
reasoning factors motivated design actions, participants with similar
reasoning considerations did not have similar design actions or
achieve similar outcomes. Why designers select lower-performing

designs can be partially explained by design actions but not reason-
ing factors. Future work will consider alternative methods to
capture reasoning factors and explore the rhetoric strategies design-
ers use to rationalize their decisions.
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Fig. 6 Design alternatives characterized by geometry, hard-
ness, and success rate

Fig. 7 Strategies of interest are correlated with each other
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