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ABSTRACT 
Final concepts are often not the most creative or innovative 

design within the solution space. The purpose of this research is 

to gain insight into the decisions made in concept selection. In 

particular, we studied how designers link multiple decision-

making elements together, including: actions (what people do), 

reasoning (why they do it), and design outcomes (an objective 

measure of engineering performance). Fifty-seven participants 

were tasked with solving a design challenge relating to a robotic 

gripper by selecting a design within a predefined design space. 

Each design had a corresponding measure (termed “success 

rate”) which enabled each designer’s performance to be 

quantified and compared against other designers. The task was 

hosted on an interactive interface in which design actions were 

collected. A post-task survey probed for the reasoning behind 

design actions. Characterization of decision-making behavior 

and reasoning was rooted in prior design literature. Design 

actions were quantified concerning the degree of design space 

explored and the decision-making strategies employed. Key 

results include design strategies such as manipulation 

techniques, the impact of maximum observed success rates, and 

a willingness to submit an alternative solution which influenced 

design outcomes. Although designer preferences validated the 

design strategies identified, there was no correlation between the 

decision factors considered and improved outcomes. The 

methods and findings from this work assessed the underlying 

dynamics when engineers selected less innovative or creative 

solutions and recommended decision-making strategies that 

should be considered to improve design outcomes. 

 

1. INTRODUCTION 
Engineering design is an iterative decision-making process that 

engineers use in developing products and systems. An ample 

design space of possible solutions is desirable [1,2]. There are 

significant efforts in the design research community to increase 

engineers’ innovative capabilities in the concept generation 

phase [3]; however, engineers often select less innovative 

solutions [4]. This gap continues to grow as the range of possible 

solutions increases as designers’ skills improve and as generative 

designs become commonplace [5]. Designers select concepts 

with lower engineering outcomes, although more optimal 

concepts are within reach, creating a tension worth further 

investigation [6–8]. Thus, there is a need to better understand the 

decision-making process of concept selection. This paper 

investigates the design behavior and reasoning designers used in 

selecting a final design concept to determine what factors 

enabled high-performing designs. 

Research in decision-making in engineering design and, 

more specifically, concept selection is critical since these designs 

are the designs that advance into the later stages of development. 

These final designs may not be the “best,” most innovative, or 

creative, but these are the concepts pursued. By understanding 

what factors enable high-performing design, the design research 

community can help engineers utilize specific strategies that 

improve design outcomes, such as systematic exploration. Prior 

work has cited feasibility as a barrier in selecting more creative 

or innovative solutions [6,7]. Feasibility is a concern across 

students and industry professionals since resources are finite 

[4,9]. For example, instilling specific considerations or 

addressing concerns that hold designers back from selecting 

highly creative or innovative designs can better target designers 

who exhibit similar behavior. 

A two-part human subjects study, a design task and a post-

task survey, has gathered information on design actions and 

reasoning. Design actions have been defined as the observable 

and quantifiable steps a designer takes within the task. Design 

reasoning has been defined as the rationale, motivation, and 

preferences participants use to explain their design actions. 

Relationships between actions, reasoning, and engineering 

performance have been determined and analyzed. This paper 
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presents these findings and closes with future directions on 

predicting design actions based on reasoning provided or vice 

versa. The ability to derive such conclusions with only design 

action or design rationale data will provide further insight into 

past research. 

 

2. BACKGROUND 
2.1 Concept Selection 
The engineering design process involves iterating between 

divergent and convergent steps. Evaluating a concept is a crucial 

stage that converges on fewer concepts than initially generated 

[10]. This decision is an executive function that involves 

reasoning and action [11]. The design research community’s 

efforts aim to increase early-stage design to allow for more 

creative or innovative solutions [1,2]; however, research shows 

engineers often fail to select such designs despite higher-

performing designs within their solution space [4]. 

Ulrich mentions that all teams use some method to choose 

among concepts regardless if the method is stated [10]. Concept-

selection tools such as decision matrices vary in their 

effectiveness [12,13]. A Pugh decision matrix lists the concepts 

to be selected between, then the design team (individually or as 

a whole) rates the concepts on a series of qualities the team 

deems most important [14,15]. Although the tool focuses on 

objectivity, literature has identified cases where team members 

have selected criteria to rate that would help confirm and build 

support for concepts of their preferences [16]. Due to the various 

components of decision-making, the paper herein focuses on two 

aspects, design actions which are the observable and quantifiable 

steps in selecting a concept, and reasoning, which are the 

explanations or motivations behind why a design action. Design 

reasoning is not necessarily observable unless an engineer 

directly provides the rationale behind an action. 

 
2.2 Design Actions 
Design actions are the incremental and observable steps that 

occur in the design process. Design exploration/search, testing, 

and final concept submission are the design actions of interest in 

this study. They are measurable interactions with the study 

interface which identifies the sequential path taken by each 

designer. The engineering design community has stated that a 

solution is the latest version of an idea that has undergone many 

transformations [17]. The idea begins as the initial idea state that 

then changes into the final goal state using transformations 

regarding its functions, features, or materials. Hay and 

colleagues [18] have noted that the limitations of idea 

transformations have constraints, bounding the solutions’ space. 

These idea transformations can be characterized in numerous 

methods. 

Goel has introduced a two-dimensional representation of 

idea transformations that are lateral or vertical [17]. Lateral 

means changes in the design, while vertical represents the level 

of detail in a design. This interpretation provides a sense of 

structure to the rather vague term of idea transformations. 

Transformations allow more insight in comparison to final 

outcomes in the design process. Instead, by characterizing each 

step and viewing all the steps holistically, insights surrounding 

the path (via search/exploration), strategies, and the degree to 

which they agree with prior findings can be quantified and 

connected to existing frameworks. 

 

2.2.1 Visualizing and quantifying design actions 

Design actions in concept-generation have been visualized 

through Linkography [19], Interaction Dynamics Notation [20], 

time series cartesian graphs, state transition diagrams, and force 

dynamics notation. Linkography is a protocol analysis method 

that requires the researcher to code the steps and then determine 

the connections between steps. Methods that require qualitative 

coding of design actions introduce researcher subjectivity which 

then requires systematic inter-rater reliability or researchers 

recoding until they agree on codes. Such methods attempt to go 

beyond the objective steps a design takes and introduce team 

dynamics or the connections between steps. The methods for 

visualizing concept-generation processes have inspired the 

visualizations for concept-selection processes in this study. 

 

2.2.2 Frameworks for assessing design actions 

Existing frameworks in information retrieval, optimization, or 

rational decision-making, are approaches to analyze design 

actions in the concept-selection process. Moving beyond final 

design task outcomes to the moment-to-moment characterization 

of design actions aims to distinguish and explain strategies or 

sequential patterns that appear across multiple designers. A 

combination of the following frameworks inspired the analysis 

techniques implemented in this work. 

The theory of information foraging from human-computer 

interaction research explains how users search for information 

using a digital interface. This theory is mentioned since the 

design task for this research study used a digital interface. The 

design actions on the digital interface have been modeled after 

design actions a designer would take in the physical world. 

According to information foraging theory, information can be 

sought, gathered, shared, and consumed analogously to animal 

foraging evolutionary models [21]. In concept selection, 

information is necessary to decide which design to advance. 

Information foraging introduces a framework to 

characterize design actions concerning depth and breadth. 

Engineers seek out information on concepts they are deciding on 

via background research, interviews, prototyping, or testing. 

Searches can be considered as the exploration of sources of 

information. Information foragers then judge or assess the 

potential source. Foraging behavior has been further classified 

into breadth and depth search. Breadth is defined as high-level 

information seeking or consuming information for short periods. 

In comparison, depth involves spending a long time processing 

information or in-depth information details. Exploration breadth 

is the number of sources of information, while exploration depth 

is the number of searches within a source [22]. Design space 

explored or the design actions performed relate to this depth and 

breadth. 

Optimization techniques use systematic methods to solve a 

problem [23]. Sequential path characterization can be thought of 
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in deterministic or stochastic frames. In a deterministic mindset, 

an engineer uses single or multi-attribute manipulation 

strategies. Single-attribute manipulation means altering one 

design parameter at a time to improve desired outcomes. In 

comparison, multi-attribute manipulation translates to altering 

multiple parameters at a time to arrive at the desired solution. 

Stochastic approaches can be used to describe the randomness or 

unexpectedness behind some decisions. In this study, testing 

strategies from participants have been described by parameter 

tuning behavior. 

Decision-making theories often fall into either a rational or 

psychological model [24]. Decisions involve action and 

cognition. A decision is a reaction to a situation involving 

judgment, expectations, and evaluation [24]. Engineering has 

traditionally followed more rational approaches on how an 

engineer makes decisions. Meanwhile, the psychological 

approach highlights how people actually behave. Ulrich’s design 

process [10] aligns well with the rational decision-making 

model; both are cyclic and overlap in problem identification, 

criteria, concept generation, evaluation, and implementation. 

However, rational models fail to account for the irrationality of 

human nature [25]. Bounded rationality theory introduces 

limitations to the rational decision model resulting in engineers 

exhibiting satisficing behavior—where the first design that 

meets the criteria is selected rather than maximizing engineering 

outcomes by exploring more of the design space [23]. These 

limitations can be attributed to human and environmental factors 

imposed on the decision-making process. Those factors are the 

aspects an engineer considers or reasons within their decision-

making process. 

 

2.3 Design Reasoning 

Design reasoning, in this paper, is the why behind a design action 

or the factors influencing decision-making. These reasons vary 

from concrete, such as prototype feedback, to more abstract 

means such as personal preferences or values. Reasoning, as 

discussed herein, focuses on the conscious considerations 

influencing the overall design task. It is essentially what a 

designer thinks about or leverages as the rationale behind their 

design actions. The factors that have been analyzed stem from 

design reasoning literature and protocol studies, such as testing 

or previous experience [15,18,26]. Prior work has found that 

designers with more years of experience rely more heavily on 

this experience or knowledge than those with less experience 

[27,28]. Design reasoning can be stated explicitly, but implicit 

design reasoning is likely occurring. 

 

2.3.1 Collecting design reasoning 

Design reasoning involves the explicit and implicit 

understanding of cognition. These cognitive processes can be 

gathered through think-aloud studies, interviews, or surveys, 

which are standard methods in which researchers directly ask 

designers to share their thought processes or rationale behind 

their design actions. Individuals may censor or modify their 

reasoning. Additionally, implicit rationale such as cognitive 

biases behind design actions may not be verbalized or recognized 

by the engineer. The research team is then responsible for coding 

or interpreting implicit reasoning. 

 

2.3.2 Frameworks for situating reasoning in the design process 

Reasoning frameworks, such as information seeking [21] or 

rational theories, explain why users perform specific actions. The 

rational model links logical reasoning to design actions 

objectively, considering what engineers do. Although engineers 

are often considered rational actors, they routinely behave 

irrationally, which indicates their reasoning is likely irrational. 

Constraints and uncertainty lie relatively in between rationale 

and psychological models. With new limitations, the decisions 

appear irrational. Work from Hazelrigg describes all engineering 

design as suboptimal due to the different objective measures 

individual designers have used for their process [25]. That means 

what is rational for one engineer is irrational for another. Thus, 

each engineer on a team optimizes different metrics (external and 

internal), and no design truly achieves optimality in all 

engineers’ eyes. Furthermore, psychological factors have been 

proposed as explanations for decisions that deviate from rational 

methods, including social dynamics, culture, and beliefs. 

 Design research speculates on the influence of cognitive 

biases in engineering design [4], and a few papers have identified 

the presence of biases such as anchoring [29], bias against 

creativity [30], and confirmation bias [16,31]. The literature 

mentioned detects these biases through qualitative studies of 

small samples, but the quantified influence of cognitive bias on 

engineering outcomes has yet to be considered. Moreover, visual 

interface designs are linked to specific search patterns and 

behaviors [32]. Research from Karim and colleagues link 

clockwise and anticlockwise behavior with demographics. This 

patterned behavior is called a directionality bias in visuospatial 

functioning. Together, rational and psychological factors are 

used to explain design reasoning. 

 

2.4 Approach 
This paper aims to combine design actions (e.g., viewing 

designs, testing, selecting concepts) and design reasoning (e.g., 

engineering principles, previous experience) to understand their 

influence on one another and a participant’s performance within 

the concept-selection stage of engineering design. The 

overarching question of this research is: how are design actions, 

reasoning, and outcomes linked? A design space with predefined 

performance measures has been utilized to answer the research 

question. Participants have been grouped by design outcomes 

from their final concept selection. The similarities and 

differences of design actions and reasoning of participant 

groupings have been identified. 

 

3. MATERIALS AND METHODS  
3.1 Participants 
A total of 68 participants were recruited for the design study 

using a call for participation at the University of California, 

Berkeley. Participants were compensated $10 for their 

participation for a total of 30 min. A bonus of up to an additional 

$20 was offered contingent on task outcomes. Participants were 



 4 © 2021 by ASME 

screened and required to be 18 years or older with engineering 

or design experience to participate in the research study. 

Experience ranged from completing one design class upwards to 

10+ years as an engineer in industry. All participants read, 

agreed, and signed a consent form. Participant demographics 

included undergraduate, graduate, and working professionals 

with backgrounds in engineering and the sciences. Data from 57 

participants (30 men, 26 women, one non-binary person) was 

used for data analysis. Data from 11 participants were removed 

due to a lack of following instructions and equipment errors. 

 

3.2 Experimental Design 
The experiment took approximately 30-minutes and consisted of 

two parts: the design task and a post-task survey. Participants 

were tasked with designing a gripper surface for a robotic arm, 

as shown in Figure 1. The context and task information shown in 

the study was copied below. 

 

Context: You are an engineer on a robotics team tasked with 

designing a gripper surface for a robotic arm, as shown 

below. A dishwashing robot uses the grasper in a wet and 

slippery environment due to dish soap. The design’s 

success is determined by the robot’s success rate in 

grasping a range of dishware. 

 

Task: Your team created 21 possible solutions based on 7 

surface designs and 3 material hardness options. They 

have created a data sheet for each design, and now it is up 

to you to decide which one to move forward with for 

production. You have 10 minutes to complete the task and 

have the option to test up to 5 designs to see their success 

rate. 

 

 
FIGURE 1: Image from robotic gripper study [33] and diagram 

created to relate design options to the testing procedure 
 

Participants received the design task instructions and 

information on how the gripper design was tested: the success 

rate in picking up objects of various shapes and textures (the 

exact dimensions were not provided). Each participant searched 

for the optimal design within a predefined design space of 

gripper surfaces provided by colleagues at UC Berkeley [33]. 

The designs shown to each participant were the same, and two  

parameters could be manipulated (2D design, material hardness), 

although additional parameters were provided on the datasheet. 

The purpose of the data sheet was for participants to identify 

design features that changed. Contact area remained constant, 

while feature number, radius, and hardness varied, impacting 

bending stiffness and a design’s performance. The task had a 10-

minute time limit and five tests maximum to see a design’s 

success rate. A five test limit was set to mimic real-life 

constraints in the design process where a limited number of 

designs can be tested due to time or financial constraints. 

Preliminary experiments found that few participants converged 

on a “good” design with less than five tests. Based on the 

design’s success rate of the final design submitted, participants 

earned up to an additional $20—twenty dollars for the best 

design, between $5 and $15 designs over 50%. Participants 

interacted with an interface for the design task portion, hosted on 

Figma, which displayed the consent form, task instructions, and 

all possible design options, as shown in Figure 2. 

The time and number of tests conducted were left to the 

participant to monitor due to interface constraints. However, this 

decision to self-monitor was aligned with what engineers and 

designers experience outside of controlled studies where they are 

expected to meet deadlines and stay within budget. Although the 

robotic gripper design could be optimized using a computer 

program, this predefined solution space removed researcher 

subjectivity in classifying a participant’s design actions and 

performance that alternative experimental setups may have 

introduced (e.g., having participants sketch their designs 

followed by researchers rating designs using rubrics). Design 

actions increased or decreased a participant’s overall 

performance. The distance between any two designs’ success 

rates was computed and used for analyses. 

The second part of the study had multiple-choice and open-

ended questions via Qualtrics about their decision process used 

and the factors considered. Open-ended questions surrounding a 

participant’s overall, initial, and final approaches were captured 

to provided reasoning in the participant’s own words. Afterward, 

participants were asked to rate eight factors, based on prior 

literature, that influenced their concept-selection process. 

Additional questions expanded on the factors selected, such as 

the datasheet, engineering principles, and previous experience. 

Any factors they rated had some influence on their decision were 

then carried forward and provided in a list for participants to 

rank. To assess the impact that authority bias had on design 

decisions, the study provided participants with an option to 

submit an alternative design from a fictional senior robotics 

engineer. That design had a success rate of over 50% but was not 

the most successful design. Participants then rated their 

confidence in their design and the senior engineer’s design on a 

five-point Likert scale.  
 
3.3 Analysis 
Data collected from the Figma website using Maze.co, recorded 

each screen a participant visited and exported the duration, 

screenId, and sequential path for each participant. The exported 

task data from Maze and survey data from Qualtrics removed 

identifiers, were cleaned, and merged for analyses. Design 

actions defined in this study were steps traveled within the 

solution space and used objective methods to evaluate a design’s 

performance [18]. Design reasons defined in this study are the 

factors considered in the concept-selection task.
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FIGURE 2: The design actions of interest are represented as actions 1-3, and nmax indicates the number of times said action could 

occur. (a) Each of the seven geometries (shown as images) branched out to include a soft, medium, and hard version. Clicking one 

of the branched-out designs opened a datasheet (b) for that design. A test displayed a design’s success rate (c).

3.3.1 Design Actions 

For this study, the goal was to submit a design of the participant’s 

choosing to move forward to production, the next step in the 

fictional robotics team’s design process. Participants 

explored/searched among the seven design geometries and three 

material hardness combinations (Figure 2a). After clicking on a 

design, a screen showed a data sheet for the design where 

participants could test a design and see the success rate (Figure 

2b). Concerning information foraging theory, the range of 

sources included all options screen, navigation of design 

geometries with material options branched-out, datasheet 

information, and lastly, the design’s success rate (Figure 2c). 

Design actions were classified by the sequential screens 

participants visited. The actions quantified in this study are listed 

in Table 1, and for the analyses of design actions, only actions 

C, D, and E, were considered since they each have 21 possible 

options. The designs explored (total and unique) were 

determined along with the time spent on each. Moreover, testing 

behavior was gathered for each participant regarding the tests 

conducted and their order. Whether a participant carried out 

single or multi-parameter manipulation decisions was concluded 

per participant and on an action-to-action level using screens-

visited. 

 

3.3.2 Factors influencing decisions and performance 

Design reasons were gathered and analyzed from the survey 

component, which used open-end and multiple-choice style 

questions. The importance ratings and rankings relative to one 

another were computed, and statistical tests were used to 

determine the findings’ significance. Pearson’s correlations were 

run to assess relationships between factors considered and their 

influence on a participant’s performance. Confidence and 

authority bias were two elements that were explored in the design 

task after a participant selected their final design. Participants’ 

willingness to submit an alternative design was computed using 

their final design’s success rate and self-reported confidence 

level. 

 

4. RESULTS 
The following results explore the relationships between design 

actions, reasoning, and outcomes. The study asked participants 

to select and submit a design from 21 possible options. 

Participants searched and explored the design space within the 

10-minute limit and tested up to five designs to see the design’s 

success rate [33]. Note that lowercase (n) refers to design actions 

and an uppercase (N) to participants. The 57 participants made 

2451 design actions; 12% of actions were test actions (n=282). 

 
TABLE 1: Design Actions for all participants combined (n = 2249). 

Excludes actions related to reading instructions/consent. 

Design Actions # of actions (n) 

A. View all options 83 

B. Click design geometries 1218 

C. Visit datasheet for a design 609 

D. Test a design 282 

E. Submit as final design 57 
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Participant groupings were determined using design 

outcomes measured by the design’s success rate, as indicated in 

Figure 2c. Participants in the high-performing category (N=19) 

achieved the best possible design (95% success rate). The 

average-performing category achieved success rates above 50%, 

excluding the optimal design (N=20), while those in the low-

performing category achieved success rates under 50% (N=18). 

The following sections use the participant groupings to identify 

differences and similarities between the groups’ design actions 

and reasoning. Figure 3 and Figure 4 remove the average-

performing group to focus on the extremes of participant 

performance. 

 

4.1 Design actions differed by groups, and a select few 
strategies resulted in improved outcomes. 
Datasheets visited, tests conducted, and designs submitted were 

the primary design actions analyzed. The heat map in Figure 3 

shows the number of design actions per design for the 19 high-

performers (top) and 18 low-performers (bottom). The darker 

shading indicates designs that were explored more than the 

lighter shaded regions. Thus, for the top heatmap, “Design 3 

Hard” was explored a max of 56 times, while for the bottom 

heatmap, “Design 55 Soft” was explored a max of 29 times. For 

context, the horizontal axis shows the seven design geometries, 

while the vertical axis shows the material harness options (soft, 

medium, hard). The percentage overlaid indicates the success 

rate for that design. The different heatmaps for each group show 

apparent differences in their design behavior.  

 

 
 

FIGURE 3: Two-dimensional representation of design space 

explored. Shading represents the number of design actions for that 

design. (a) High-performing designers and (b) low-performing 

designers. The success rate for each geometry-hardness combination is 

overlaid as a percentage. 

 

4.1.1 Increased design space exploration did not increase 

design outcomes. 

The scatterplot in Figure 4 shows one quantification of the 

breadth and depth of the 57 participants’ design actions. Breadth 

was the number of datasheets they visited (percent of design 

solutions explored), while depth was the success rates of design 

submitted. Multiple models attempted to explain the data shown; 

however, they had low R2 values with statistically significant p-

values. Although the models could not explain the variation of 

data, a slightly negative correlation between the design space 

explored and the final design’s success rate was observed (r =  

-.27). Therefore, exploring more of the design space did not 

improve final success rates and appeared to have a negative 

influence. 

Alternative analyses of breadth included the total number of 

screen visits and the total task time. Correlational statistical test 

between 1) the total number of screen visits (including multiple 

visits to datasheets) and success rate of final design and 2) total 

task time and success rate of the final design are not significant. 

The relationships between what participants did were 

inconclusive for this study using this version of breadth and 

design outcomes. 

 

             

 

FIGURE 4: Scatterplot of the percentage of design space explored 

(number of datasheets explored of the 21 possible datasheets) and the 

success rate of the final design submitted. Each participant is 

represented as a single data point. 

4.1.2 Single parameter manipulation as a testing strategy 

improved engineering outcomes. 

Design geometries and material hardness values were the two 

directly adjustable parameters. Keeping the geometry constant 

while changing hardness or vice versa was a single parameter 

change. Changing both design geometry and hardness were 

multi-parameter changes. Table 2 shows testing sequences from 

two participants, one with a single parameter technique and one 

with a multi-parameter technique. The 19 high-performing 

participants used single-parameter manipulation most among the 

participant groupings.  

Participants who changed one parameter at a time between 

tests were expected to have higher engineering outcomes than 

those who changed two parameters at once. Eight out of 19 high-

performers, 7 out of 20 average-performers, and 1 out of 18 low-

performers strictly used single-parameter manipulation. 

Although 11 of the 19 high performers used multi-parameter 

techniques, they primarily used a single parameter technique, 

and only after they achieved the optimal design did they test a 

completely different design. A chi-squared test was run to 
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determine whether the techniques (single or multi) employed by 

each grouping were significant or due to chance. The results 

show a statistical significance between the three groups (χ2 = 

6.848, p < .05), meaning that high performers’ testing strategies 

are statistically different from average and low performers. A 

one-tailed Mann-Whitney test assessed whether those who 

carried out single parameter manipulation had improved success 

rates (average of the group) compared to those who used multi-

parameter manipulation. The results are statistically significant 

(Mann–Whitney U = 198, n1 = 16, n2 = 41, P < .05 one-tailed). 

There was a 17% increase in performance for those who used 

single parameter manipulation. The open-ended questions from 

the survey confirmed that participants used these strategies. 

 

4.1.3 Two-thirds of participants selected the design with the 

maximum observed success rate. 

Submitting a final design with the max observed success rate 

from testing was the expected design behavior. Results show that 

72% of participants (N=41) behaved as expected while 28% of 

participants (N=16) behaved unexpectedly and did not submit 

the design with the best-observed success rate. Of those 16 

participants, ten were below the 50% threshold needed to earn a 

bonus, while six were already above the 50% threshold. Upon 

closer inspection, of those 16 participants, 44% (N=7) took a risk 

on an alternative design not tested and achieved a higher design 

outcome, while 56% (N=9) took that risk and resulted in lower 

design outcomes. Of the six participants above the 50% 

threshold and risked submitting an untested design, only one 

person outperformed their previous design while the other five 

participants not only resulted in lower performance designs but 

no longer qualified for any bonus. Those who submitted designs 

with the max observed success rate had a 25% mean difference 

in success rates (69% for max observed and 44% for untested 

designs). 
 

TABLE 2: Manipulation techniques with examples sequences 

and average participant performance 

Technique  

(example sequence) Participants Mean 

Single parameter 
(13M →55M →7M →7H →3H) 

N=16 74% 

Multi-parameter 
(55S →1H →19M →3S →55H) 

N=41 57% 

 

4.1.4 Willingness to submit an alternative solution was 

influenced by confidence levels and authority bias. 

Another aspect of the study offered participants the option to 

change their final design submission to the design submission of 

a fictional senior robotics engineer. Those who submitted their 

own design (N=41) had, on average, a success rate of 69% and a 

confidence rating of 3.31. The confidence rating was on a 5-point 

Likert scale. Those who submitted the senior engineer’s design 

(N=16) had, on average, a success rate of 45% and a confidence 

rating of 2.19. One-tailed Mann-Whitney tests between the two 

groups for mean success rate (Mann–Whitney U = 150, n1 = 41, 

n2 = 16, P < .05 one-tailed) and mean confidence (Mann–

Whitney U = 132, n1 = 16, n2 = 41, P < .05 one-tailed) were 

statistically significant. Thus, participants who accepted the 

suggested solution had lower confidence and lower success rates 

from testing. 

 

4.2 Tests, guesses, and engineering principles were 
the three most important decision-making factors. 
Design justifications were expected to help explain the design 

actions discussed in Section 4.1. This section presents factors 

and their influence on the design task and outcomes. Factors 

were collected via the survey in both close-ended and open-end 

questions. Table 3 shows the average ratings for the eight 

primary factors of interest. Open-ended responses validated 

design action strategies observed in the previous section and are 

discussed in those respective discussion sections. 

The factor analysis evaluated the importance of all 

participants’ factors. A one-way ANOVA was used to assess 

statistical differences among the importance ratings for each 

factor considered (F(7,448) = 74.1, p < .001). A follow-up 

TukeyHSD was conducted where most factor pairs were also 

significant, which indicated that each factor played different 

levels of importance. Pearson’s correlational tests were 

conducted between participant’s ratings of factors (i.e., Tests) 

and their final success rate (total of eight tests); The correlation 

coefficients were low or negligible in the range of r = -.10 to .23, 

which means prioritizing certain factors did not improve success 

rates. Pearson’s correlation was also run for each pair of factors 

to understand how factors correlated with other factors. Only 

previous experience and engineering/design principles had a 

moderate correlation (r = .47), while all other pairs had lower 

correlation values (r). For example, guesses and previous 

experience were expected to be negatively correlated since more 

knowledge should have signaled less need for guesses, but no 

such correlation existed. 

 

TABLE 3: Factors rated by importance in concept-selection 

Factor Mean rating Standard error 

Tests  4.81 .073 

Guess 3.75 .131 

Principles 3.25 .123 

Previous Exp 2.82 .174 

Datasheet 2.70 .168 

Time 2.32 .168 

Financial 1.42 .086 

Aesthetics 1.42 .100 

 
5. DISCUSSION 
A human subjects experiment used a predefined solution space 

with designs of varying success rates to gain a deeper 

understanding of design actions and reasoning in concept 

selection. The participants’ groupings by engineering 

performance paved the foundation for which similarities and 
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differences between the groups’ design actions and reasoning 

were analyzed. Excluding the average-performance grouping 

from Figure 3 and Figure 4 directs attention to the extremes to 

show the contrast between observed behaviors of low and high 

performers. Through this multi-attribute understanding of 

decision-making, the hope was that the design research 

community could better understand the dynamics influencing 

concept-selection decisions and, ultimately, design outcomes. 

 

5.1. Multiple design actions led to high-performing 
designs. 
The degree of design space search/explored, manipulation 

techniques used, expected behavior observed, and willingness to 

change designs influenced engineering outcomes in this study.  

Design actions of interest were viewing design datasheets, 

testing, and submitting a design as visualized in Table 1 and 

Figure 2, ranging from high-level information to in-depth 

information.  

Exploring more of the design space did not lead to improved 

success rates. Therefore, participants who viewed more of the 

designs did not do better than those who explored a smaller 

portion of the design space. This observed finding contradicts 

previous literature, which has found that exploration improved 

design innovativeness [34]. This contradiction may be due to the 

performance measures used, innovation metric versus success 

rate. Information foraging theory complements the findings and 

states that users who searched less (% of design space in this 

study) but at more profound levels attained higher information 

values [21,22]. In contrast, those who explored more for brief 

times acquired less valuable information or lacked understanding 

of the design challenge. Higher values of information gain in this 

research assumed that participants spent more time on fewer 

designs because they knew that information was more valuable 

than alternative designs or were more meticulous in their design 

actions than other participants. 

Alternatively, the degree of the design space explored 

showed how exploratory a person was, the degree of design 

fixation experienced [29], or the degree of uncertainty a 

participant felt [25]. Those who searched more might be 

uncertain about the design outcomes due to their lack of 

systematic testing or limited engineering knowledge/experience. 

In reviewing the qualitative survey data, one participant “knew 

that harder grippers would have higher success rate[s],” while 

others may have arrived at that spot by luck or instinct as another 

participant said, “it was design intuition to refer to a hard 

material with a triangular point force-based design.” 

Moreover, when evaluating tests conducted (nmax=5), single 

parameter manipulation resulted in improved outcomes. This 

strategy was more successful than a trial-and-error approach that 

rarely resulted in high success rates. These results indicate how 

these designers and engineers might select concepts in other 

situations. The findings do not reveal why participants used 

manipulation versus trial-and-error methods. That reason is 

likely related to designer experience but may occur because they 

jumped into the task too quickly and used up their tests early on. 

A few participants realized their error, but it was too late, such 

as this participant, “I mistakenly chose to try to test for the best 

hardness and surface area at the same time, which did not work 

out favorably. I should have focused on a single aspect.” 

Differences in when and how certain groups tested align with 

Tahera and colleagues’ findings, indicating that testing actions 

and reasoning of testing vary considerably [35]. Future inquiry 

in understanding the nuances of testing behavior in this study 

will be necessary. 

Most participants (72%) behave as expected and selected the 

design with the maximum observed success rate. This conclusion 

suggests that designers who did not submit the design with the 

max observed rate placed the interest of the fictional design team 

lower than the financial incentive offered (designs over 50%). 

Final decisions that did not align with expected decision-making 

behavior highlight a design engineer’s willingness (in this study 

conditions) to send a design to production with more unknowns 

in the hopes of better performance than a known design of 

average performance. Of course, a financial incentive for the 

decision-maker could be a positive aspect for one individual. The 

results suggest that one’s self-interests were prioritized. This 

decision behavior might occur in industry or the classroom by 

these same designers. Meanwhile, the decision to submit the 

design that met the threshold may point to satisficing behavior 

[36]. Although the aspect of a bonus was carefully introduced 

and piloted before testing, possible influences may have been 

overlooked [37]. Examining scenarios outside of the lab where 

bonuses are involved may be of future interest in engineering to 

determine if lower-performing designs with many unknowns 

would result. 

Confidence levels and authority bias influenced a designer’s 

willingness to submit a fictional senior robotics engineer’s 

design. Considering 16 participants (with mean success rates of 

45%) changed their design submission, this implies similar 

behavior may occur on engineering teams in industry. The 

willingness to use the other person’s design depended on a 

participant’s max observed success rate and self-confidence. The 

literature on cognitive bias has identified authority bias as a 

factor that influenced decision-making [38,39]. Design research 

from an architecture course detected the high degree of influence 

instructor feedback had on project direction, even when the 

current direction was quite successful [40]. The implications for 

real-world scenarios can be detrimental to the team when low-

performing recommendations are pursued over high-performing 

designs from a junior designer or designer with low confidence 

in their design. These results support the need for structured 

concept-selection methods or tools to reduce these influences, 

else low-performing designs could result. 

 

5.2. Reasons for concept-selection approaches were 
rooted in various factors. 
Both expected and unexpected design reasoning were identified 

in the post-task survey. Testing, guesses, and principles of 

engineering/design were the top three factors ranked. However, 

the factors considered were not correlated with design outcomes. 

Low correlations between the factors and success rates point to 

a disconnect between individual values and translating that value 
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to a design approach. For example, both high and low-

performing designers rated testing with high importance. 

However, after examining their design actions, high-performers 

used test feedback strategically with single-parameter behavior 

while low-performers relied on trial-and-error. 

Additional factors not asked as close-ended questions were 

identified from the open-ended responses.  Patterns of isolating 

and prioritizing variables from the data sheets were identified as 

the reasoning behind the manipulation techniques discussed. 

Multiple participants referred to three contact points or triangular 

shapes as a rationale for starting or testing the design with three 

features that stemmed from engineering principles or prior 

experience. A few participants appeared to have used analogical 

reasoning between the task at hand and their prior experience/ 

engineering knowledge to support their decision. These results 

suggest that although participants in this task documented 

reasons for their actions, the same rationale did not lead to the 

same approach. Design research literature has determined that 

analogical reasoning and analogical distance were correlated 

with improved design outcomes for idea generation [41]. 

Perhaps future work should consider the impact of analogical 

reason on concept selection. Despite motivations and reasons for 

completing a task were aligned, the approaches used and designs 

tested differed. 

The surprising element in the open-end responses was the 

words participants used to communicate their rationale. 

Participants’ responses point to the known challenge that 

students often struggle to articulate their decisions during the 

design process and their justifications for doing so [42,43]. 

Statements surrounding justification may be rhetorical strategies 

to strengthen their own beliefs. For example, one person used 

intuition that a more rigid surface was better than the other 

hardness options. However, the basis for their belief was not 

stated. Another person assumed that hard would be better and 

another hypothesized that hard would be better. Using intuition, 

hypothesizing, having a gut feeling, and making assumptions 

have different meanings. However, they appeared to be used 

interchangeably. Future work should determine whether logical 

rationale was present (gut feeling), a proper understanding of the 

problem (intuition), theory to test against (hypothesis), belief 

with no proof (assumption) [27,28,44–46]. 

Moreover, the possibility that confirmation bias and other 

biases influenced design actions were likely. By stating that 

some designs are going to be better (whether it is based on factual 

information or not), displays a participant’s tendency to seek and 

interpret evidence to confirm existing beliefs which aligns with 

prior work on confirmation bias in design cognition [16,46] and 

hypothesis testing [45]. This result matters because participants 

may perform design actions that reinforce their biases or 

disregard information counter to their approach. Without using 

concept-selection methods and tools, unexpected design actions 

and reasons are likely to increase, resulting in low-performance 

designs outside the lab. 

 

5.3 Lessons for future studies that link design actions, 
reasoning, and outcomes for an individual’s concept-
selection process. 
Constraining the design space enabled this research to directly 

compare design actions between participants and reduce 

subjectivity that an unconstrained design solution space would 

have introduced. However, this constraint was also a limitation 

to designer creativity and the transformations possible. While a 

10-minute task and five tests provided meaningful results, future 

work could consider modifying the task duration and number of 

tests. Self-reported design reasoning via a survey completed 

remotely was subjective and could be improved. Participants 

communicated their processes with varying terminology [42,43] 

and under/over-stated their process. Perhaps a short interview 

could follow, or a more detailed survey on their process could be 

utilized. With over 50 participants, this study collected multiple 

decision elements (actions, rationale, and performance) from a 

single study in one sitting, which is highly desirable for the 

design research community [18]. Traditionally multiple studies 

would need to be carried out to gather the information conducted 

in this study. Future work will continue to use this constrained 

design solution space to explore additional influences on 

participants and how design actions, reasoning, and design 

outcomes change with the introduction or reduction of new 

information. 

  

6. CONCLUSION 
This paper presents an empirical study combining qualitative and 

quantitative methods connecting design actions, reasoning, and 

outcomes, and makes a series of recommendations regarding 

decision-making strategies for improving design performance. 

Using a robotic gripper design problem as a test scenario, 

detailed design process data from 68 participants was collected 

with a graphical user interface and post-task survey. Results 

highlight specific design actions that improve design outcomes, 

such as the use of testing strategies and selecting a final design 

for which maximum task performance was observed (e.g., rather 

than guessed). Final design performance, and designer 

confidence in those values, highly influence a designer’s 

willingness to submit an alternative solution. Although design 

reasoning (the decision-making heuristics underpinning 

observed behavior) explains design actions, participants with 

similar importance ratings for design reasoning factors did not 

have similar design actions, nor did they achieve similar 

outcomes. Understanding why designers select lower 

performance designs can be partially explained by design actions 

but not by design reasoning. 
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