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ABSTRACT

Design rationale captures the justification behind a design
decision. Often, rationales vary in the content and depth of
information, making the study and comparison of rationales
challenging. This project aims to characterize design rationale
and develop a computational approach to evaluate design ratio-
nale quality at scale. In total, 2250 rationales were machine-
generated using GPT across two different representations, and a
portion of the rationales (n = 512) were evaluated by two raters
across five dimensions of quality. Rationales were then charac-
terized using natural language processing techniques, resulting
in 108 linguistic features for each rationale. The evaluations and
linguistic features were used to build eight predictive models for
each quality dimension. The main results show that structured
rationales were rated higher than unstructured rationales across
the five dimensions. Thus, the tested feature, specification, and
evidence (FSE) framework was shown to be a worthwhile ap-
proach to represent the justification behind a design decision.
Moreover, key linguistic features that correlate with higher qual-
ity ratings were identified. Future work will explore how design
rationale quality and characteristics impact design decisions,
particularly in a human-AI teaming context where generative de-
sign recommendations could benefit from including generative
design rationales.

∗Address all correspondence to this author.

1 INTRODUCTION
Design rationale is the justification behind a product com-

ponent, often captured via written reports and oral presentations.
Documenting design rationale is a critical aspect of the engineer-
ing design process; however, what to include and at what level of
detail needs to be standardized in teaching or practice. Design ra-
tionale has many definitions, capture methods, and use cases [1].
We adopt Lee’s definition of design rationale as “not only the
reasons behind a design decision but also the justification for it,
the other alternatives considered, the tradeoffs evaluated, and the
argumentation that led to the decision” [2]. The scope of this
research focuses on characterizing written design rationale.

The primary significance behind design rationale usage cen-
ters on the artifact’s long-term success and financial implications.
Rarely will a single individual be responsible for the entire de-
sign process; instead, engineers and designers need to work to-
gether and communicate with other members of a firm (e.g., su-
pervisors, sales, marketing) and clients [3]. A team that spends
hours developing an innovative product may see the product fail
due to poor positioning or poor communication. Additionally, a
firm may spend unnecessary resources repeating previous mis-
takes that were not documented or tracking down rationale from
previously completed design iterations. Research in engineering
design has also found that information and tone used to reason
and explain decisions affect human behavior [4–6]. Thus, struc-
turing design rationale in ways that enhance the design process
is of high importance.

This paper aims to quantify the quality of design rationale
using human evaluators and rubrics and then transfer those hu-
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man evaluations into a computational tool to quickly evaluate
new design rationales at scale. Human evaluators can provide a
sense of whether the rationale provided is sufficient; however,
doing so at scale is a time-consuming and unreasonable task.
Existing critical thinking rubrics from technical writing domains
were used to rate the quality of design rationale across multiple
dimensions. Toward developing a tool to output a quality score,
this work leverages natural language processes (NLP), which
take in the written text and process the information into mean-
ingful features that were selected and integrated into a model. In
this knowledge transfer from human evaluators into a tool, we ar-
ticulate the linguistic elements that correlate with higher ratings.
The two specific research questions are:

RQ1: Does structuring rationale using the Feature, Specifi-
cation, and Evidence framework result in higher-rated ratio-
nale than unstructured rationales?
RQ2: What linguistic features result in high-quality ratio-
nale?

The motivation behind developing an approach to evaluate
design rationale quality at scale stems from the need to pro-
vide designers with actionable insights to enhance their decision-
making processes and communication skills. Engineering doc-
uments tend to favor the technical aspects of the final solution
but lack an explanation of the context of the process [7]. The
potential impact of this research extends beyond individual skill
development and could be integrated into generative artificial in-
telligence (AI) applications in design. For example, the tool can
be valuable for evaluating and refining generative rationale ap-
proaches [8]. Overall, such a tool addresses the immediate gap
of enhancing design rationale communication and holds promise
for shaping future design support tools and methodologies.

2 BACKGROUND
In order to consistently differentiate rationale quality, an ob-

jective measure must be used. Currently, no commonly accepted
measures exist. Thus, this research leverages human evaluators
and rubrics to serve as the ground truth coupled with NLP feature
extraction that helps explain the linguistic characteristics associ-
ated with higher-rated rationales. The following sections outline
the importance of quality measures, the role of human raters and
rubrics, and computational approaches to analyze language. This
project uses similar pipelines to researchers who developed com-
putational methods to automatically rate SAT essays based on
standardized SAT rubrics [9, 10].

2.1 Measures to evaluate rationale quality
The first approach to evaluate design rationale leverages hu-

man raters and rubrics with defined scales. Selecting a rubric
to evaluate design rationale first relies on characterizing what

type of writing or processes occur in technical design documents.
Writing rubrics tend to look holistically at an essay or book,
while argumentation or critical thinking can be used in looking at
smaller sections, such as design rationale. Moreover, the type of
writing is technical, describing design methods, tools, and de-
cisions compared to what might appear in an essay or novel.
Technical writing centers on effectively communicating complex
information, emphasizing clarity, precision, and adherence to es-
tablished conventions.

2.2 Human evaluators and rubrics
To evaluate design rationale, the first approach leverages hu-

man raters and rubrics with defined scales. Selecting a rubric
to evaluate design rationale first relied on characterizing what
type of writing or processes occur in technical design documents.
Writing rubrics tend to look holistically at an essay or book,
while argumentation or critical thinking can be used in look-
ing at smaller sections, such as design rationale. Moreover, the
type of writing is technical in nature, describing design methods,
tools, and decisions compared to what might appear in an essay
or novel. Technical writing centers on effectively communicating
complex information, emphasizing clarity, precision, and adher-
ence to established conventions.

Meanwhile, critical thinking encompasses the capacity to as-
sess, analyze, and synthesize information from various sources,
requiring the cognitive skills to evaluate, make inferences, and
draw meaningful conclusions [11]. Technical writing is evalu-
ated at the report level, whereas critical thinking can be assessed
in smaller quantities of data (i.e., condensed, paragraph-level for-
mat). As such, the distinction between the type of writing (tech-
nical vs. not) and scope (report vs. paragraph) in this context
calls for carefully selecting a rubric annotators will use to pro-
vide the ground truth.

The rubric selected for this study focuses on critical think-
ing across five dimensions (evaluating, analyzing, synthesizing,
forming arguments-structure, forming arguments-validity) [11].
The original scale from Reynders et al. uses a zero (worst) to five
(best) scale, explaining what a 1-rating, 3-rating, and 5-rating
should include. However, in their study, none of the raters used a
zero, and what a zero rating is was not clearly defined. The same
scale was used for this paper.

2.3 Computational approaches
The larger vision of this work is to use an automatic evalua-

tion approach similar to Grammarly for design rationale. Gram-
marly is a cloud-based typing assistant that checks fundamen-
tal elements such as spelling, grammar, punctuation, and clarity.
It also can assess more complex attributes of engagement, pla-
giarism, style, tone, and context-specific language. If errors are
noted, Grammarly offers suggestions that you can accept. Gram-
marly, while helpful, focuses on established writing conventions,
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whereas as a tool for engineering students and professionals, it
should consider the overall content and norms of engineering.

Critical dimensions of natural language, including cohesion,
clarity, coherence, and conciseness, play pivotal roles in deter-
mining the effectiveness and comprehensibility of a text. Cohe-
sion pertains to the logical connection between sentences and
paragraphs, ensuring that the text flows smoothly and transi-
tions are seamless. Clarity focuses on the precision of language
use, avoiding ambiguity, and using explicit, easily interpretable
terms. Coherence addresses the overall logical structure of a text,
verifying that the ideas and information are organized in a logical
sequence and are mutually supportive. Furthermore, the evalua-
tion tool should consider vocabulary diversity, grammatical ac-
curacy, and adherence to established writing conventions.

Coh-metrix and TAACO (Tool for the Automatic Analysis
of Cohesion) are two computational approaches used for feature
extraction from a written text. Coh-metrix is rooted in discourse
analysis principles and offers a framework for assessing text co-
hesion [12]. This feature extraction model examines sentence
relationships, evaluating elements like references, conjunctions,
and lexical choices. The 108 indices extracted from the Coh-
metrix model are summarized into 11 categories noted in Fig-
ure 1 under featurization. The complete list and definitions can
be seen [13]. On the other hand, TAACO calculates semantic
overlap between sentences (local cohesion), paragraphs (global
cohesion), and entire document (overall text cohesion) for nouns
and verbs [10]. It assesses how well a text maintains consistency
and logical connections with a central theme or topic. The Coh-
metrix model was used in this study for feature extraction.

Work from the authors who developed the Coh-Metrix
model highlighted characteristics associated with more cohesive
texts, such as lexical diversity, connectivity, and word concrete-
ness. Lexical diversity measures the variety of vocabulary in a
text. Higher cohesion tends to correlate with lower lexical di-
versity due to repeated word usage. Connectivity measures the
frequency of explicit linguistic devices (e.g., pronouns, conjunc-
tions) used to link different parts of a text. Word concreteness
assesses the syntactic clarity of expressions in a text. How-
ever, the researchers who developed the Coh-metrix model used
a writing rubric from Breetvelt et al., including 15 dimensions
(e.g., structure, thesis statement, evidential sentences) [12, 14].
Due to the nature of design rationale as technical writing rather
than essays or novels that were used to develop the Coh-Metrix
model, the rubric selected for this study focuses on critical think-
ing across five dimensions (evaluating, analyzing, synthesizing,
forming arguments-structure, forming arguments-validity) [11].

2.4 Feature, Specification, and Evidence (FSE)
Framework

The representation of design rationale is not standardized.
Thus, the content and depth of information included in a design

rationale varies. One framework that aims to enhance commu-
nication and documentation practices of design rationale is the
feature, specification, and evidence framework [15]. The main
content of the framework is described below. Key to this project,
the framework was used to generate half the data to assess the
effectiveness of the framework.

Feature (F) describes an artifact’s design component or at-
tribute that the rationale serves to justify, such as a brake pad,
steering wheel, or tire. In general, the feature should meet a
specification. The breakdown of which features to include in re-
porting can be best defined by the firm or industry. For example,
the exact bolt material might need explicit rationale; however,
features are more likely to serve as a critical component of the
final solution.

Specification (S) describes the stated design requirement(s)
the feature aims to address, defined in the early stages of the de-
sign process, such as slowing down the vehicle, steering the ve-
hicle, or maintaining contact with the road. These specifications
are noted early in the process, and existing tables may be refer-
enced; however, authors of design rationale need to be explicit
about which specification they are referring to rather than cite an
entire table. A feature can address more than one specification,
and multiple features can address a single specification.

Evidence (E) describes the relevant information from that
design process that empowered the designer to select the final
feature that meets the specification(s), such as interviews, back-
ground research, or product testing. For example, testing alter-
native braking mechanisms or brake pad materials is considered.
The evidence is the meaningful output acquired using design
methods. Thus, designers might include the tests used and the
results from those tests influencing their decisions.

3 METHODS
Overall, this project quantifies the quality of design ratio-

nales as noted in Figure 1. In essence, what characterizes a
’good’ design rationale or justification behind a design decision?
To do so, a dataset of design rationales was generated for 25
consumer products (each rationale containing about 100 to 200
words). This dataset was then evaluated using human raters on
five dimensions [11]. The raw text was processed using feature
extraction by Coh-Metrix, resulting in 119 features [12]. After-
ward, careful feature selection was performed, allowing for the
most relevant features to be used in building a predictive model.
A predictive model would enable designers to evaluate new de-
sign rationales at scale. The tool would support design commu-
nication and serve as a tool to assess AI-generated rationales.

For this study, the independent variables of interest are the
design rationales. The key dependent variable is quality, which
needs to be defined via a set of features in a model. The main
components of this project entail data collection, data labeling,
featurization, model building, and evaluation. The exact nuances
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FIGURE 1. Overview of research design.

and plans for each are described in the following sections.

3.1 Dataset
A total of 2250 design rationales were generated for 25

products (Table 1) with five features under two conditions
with nine personas. Representative rationales for both the
Unstructured and FSE conditions are shown.

25 products x 5 features x 2 conditions x 9 personas
= 2250 rationales

Unstructured rationale - The walking belt on a treadmill
serves a crucial purpose in effectively simulating the natural pro-
cess of walking or running. As an engineer, when designing
such a system, there are two primary goals: firstly, to create a
user-friendly device, and secondly, to replicate the actual phys-
ical experience as closely as possible. The belt provides a con-
tinuously moving platform that imitates the ground movement
one would experience while walking or running outside. This
allows the users to stay in one place, making it safer and more
convenient. Additionally, the belt’s surface presents a consistent,
predictable terrain, reducing the risk of injury. Advanced tread-
mills also adjust the belt’s speed in real-time based on the user’s
pace, ensuring a more customized workout. The integration of
cutting-edge technology in the belt system—like cushioning for
shock absorption, enhanced grip for stability, and digital control
for speed adjustments—improves the overall functionality of the
treadmill, making it an indispensable tool for indoor fitness rou-
tines.

FSE structured rationale - The cover on an electric pres-
sure cooker (F) is designed to ensure safety and pressure regu-
lation, both crucial facets of using the device. The specification

TABLE 1. List of 25 consumer products.
Product
electric toothbrush
coffee maker
road bike
microwave
blender
toaster
electric kettle
hearing aid
electric shavor
hair dryer
treadmill
electric standing desk
ceiling fan
stand mixer
electric pressure cooker
drill
table saw
random orbital sander
magnetic rowing machine
seated leg press
segway
projector
gas weed eater
gas leaf blower
manual blood pressure monitor

(S) states that the product must safely contain high pressure and
temperature, avoid accidental opening, and allow an effective re-
lease of pressure when necessary. The cover is equipped with
safety features including a locking mechanism to prevent acci-
dental opening and a pressure release valve for controlled steam
venting. The selection of these features is backed by substantial
evidence (E). In user studies and interviews, safety was consis-
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tently emphasized as a top priority for users when engaging with
pressure cookers. Moreover, background research on cooker re-
lated accidents revealed many incidents occurred due to improper
pressure management or accidental opening of the cooker un-
der pressure. Historical product testing also showed that a well-
designed cover can significantly reduce these risks. Therefore,
the cover has been designed to meet these user-specific needs
and safety standards of the industry, leading to a better, more
intuitive user experience with the device.

3.2 Data collection
3.2.1 Materials GPT 4.0 from OpenAI was used to

generate the rationales, which required an API key and Python
terminal. Considering GPT is known to produce similar re-
sponses, nine personas were used to increase variability in the
responses produced. Prior research has shown that including
personas within GPT prompts has improved response variabil-
ity to various prompt engineering tasks [16]. The personas are
based on role titles that human subject participants of experi-
mental studies might hold, including mechanical engineer and
industrial designer. Gender-neutral names and pronouns were
used when providing GPT with a description of each persona.
The personas varied on two dimensions (form-function and ex-
perience) and were used to increase variability. Form-function
sought to capture information related to domain expertise, while
the experience was captured by role title (e.g., entry-level, se-
nior). A full list of titles and experience levels can be seen in the
Appendix.

3.2.2 Procedure One hundred twenty-five unique
prompts were asked from 25 consumer products, each contain-
ing five features. For example, ”What is the rationale behind the
walking belt on a treadmill?” Prompt engineering was required
to output the desired response from GPT, which focused on lim-
iting the number of words GPT used. To answer RQ1, which
evaluates if the FSE framing is better, two conditions were used
(unstructured and FSE structure) as noted in Table 2.

3.3 Data labeling
Annotators were required to have prior experience assess-

ing student or employee reports in an engineering or design con-
text (i.e., education or practice). Two raters in total used a five-
dimension rubric [11] that assesses critical thinking (evaluating,
analyzing, synthesizing, forming arguments (structure), forming
arguments (validity) on a one (worst) to five (best) scale, using
whole integers. Annotators were provided the list of rationales
as a CSV in which they were trained on a fraction of the data
(approx. 112 or 5% of the total dataset). Annotators were blind
to the conditions.

Intraclass correlation (ICC) estimates and their 95% confi-

TABLE 2. Prompt instructions for two conditions

Condition Instructions

Unstructured Please write your rationale (approx. 100 to
200 words) in a single paragraph format.

FSE Please write your rationale (approx. 100 to
200 words) in a single paragraph format us-
ing the FSE framework. Feature (F) describes
an artifact’s design component or attribute that
the rationale serves to justify. In general, the
feature should meet a specification. Specifi-
cation (S) describes the stated design require-
ment(s) the feature aims to address, defined in
the early stages of the design process. Evi-
dence (E) describes the relevant information
from that design process that empowered the
designer to select the final feature that meets
the specification(s), such as interviews, back-
ground research, or product testing.

dence intervals were calculated using RStudio package version
(irr) based on a mean-rating (k = 2), consistency-agreement, 2-
way random-effects model. The resulting values for 112 ratio-
nales were: evaluating (.94), analyzing (.79), synthesizing (.83),
structure (.79), and validity (.85). Values less than 0.5 are in-
dicative of poor reliability, values between 0.5 and 0.75 indicate
moderate reliability, values between 0.75 and 0.9 indicate good
reliability, and values greater than 0.90 indicate excellent relia-
bility [17].

ICC(3,k) =
MSR −MSE

MSR
(1)

3.4 Featurization
The NLP approach used the Coh-Metrix model to produce

numerical values for linguistic and discourse representations of
each rationale. Coh-metrix was provided an input CSV of the
2250 rationales, and the output produced numerical values for
108 indices across 11 categories (descriptive, text easability, ref-
erential cohesion, latent semantic analysis, lexical diversity, con-
nectives, situation model, syntactic complexity, syntactic pattern
density, word information, and readability). For the complete list
of linguistic indices the model generated and their corresponding
definitions, see [13]. These NLP analyses run within the Coh-
Metrix tool helped characterize each rationale with information
such as word count or lexical diversity. Thus, the resulting in-
dices serve as features that were then explored and selected in
the model-building phase.
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3.5 Model building
This project aimed to predict the quality of design rationale

on five dimensions [11]. Additionally, trends between linguistic
features and quality measures were identified. Due to the im-
mense burden on human raters to evaluate the rationale solution
set, the trained experts hand-coded a random sampling of 512
out of the 2250 total rationales on an ordinal scale from 1 to 5.
Considering that a portion of the data was double-coded by each
annotator, an average rating for each dimension of rationale qual-
ity was used. Thus, the output of the prediction task results in a
continuous variable also ranging from 1 to 5 (e.g., 3.45).

Identifying and selecting relevant features is crucial to tack-
ling this regression problem. Using the Coh-Metrix model, one
hundred-eight linguistic features were generated for all 2250 de-
sign rationales. To reduce data dimensionality, the data was stan-
dardized before running PCA and employing KneeLocator to
identify the elbow point. This point indicates the optimal number
of features for maximal variance explainability (n=31).

Next, model selection considered several factors: the task’s
regression nature, the dataset’s size (2250 samples), and the de-
sire for a model that balances simplicity with explanatory power.
Therefore, simplicity guided the model selection process, and
RMSE was used to assess error rates, while AIC and BIC were
explored for complexity evaluation. The models used were:

Dummy Regressor: Serves as a baseline model for compar-
ison. This model gives predicted values based on simple
strategies disregarding input data.

Linear Regression: Selected for its simplicity and inter-
pretability, linear regression is an effective model. It offers
straightforward insights through model weights. The model
was refined by incorporating PCA and regularization, using
cross-validation to optimize regularization parameters.

Random Forest: Selected for its robustness to outliers
and ability to capture non-linear relationships. Random
Forest constructs multiple decision trees on data and feature
subsets, minimizing the impact of outliers and enhancing
model resilience.

Gradient Boosting Machines (GBM): GBM, similar to Ran-
dom Forest, effectively captures non-linear relationships and
surpasses linear regression in predictive accuracy. GBM
incrementally corrects errors from weak prediction models
(e.g., decision trees) and systematically improves accuracy.

The dataset was split into training and validation sets for
model training and evaluation. This approach allowed us to train
models on the training data and assess accuracy using the vali-
dation set. We used RMSE as the primary accuracy metric and
utilized grid search cross-validation to fine-tune hyperparame-
ters.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (2)

4 RESULTS
Design rationales were collected (n = 2250), and a subset

(n=512) was evaluated by human raters and used in building a
model that could predict design rationale quality for new ratio-
nales. The following sections outline the findings of the two re-
search questions. The first focuses on comparisons across FSE
structured and unstructured rationales for both human ratings and
Coh-metrix indices. The second finding focuses on model devel-
opment that aims to predict values for each of the five rubric
dimensions.

4.1 FSE structured rationales were rated higher
across the five dimensions (n=512)

To compare the rated rationales of FSE and unstructured,
t-tests comparing the means of each grouping were shown in Ta-
ble 3. Results for all five attributes were statistically significant,
meaning that the two groups are not the same, and thus, we reject
the null hypothesis that they are the same. Across the five rubric
dimensions, FSE structured rationales were, on average, higher
rated than unstructured rationales. Figure 2 visualizes the mean
rating for each condition per quality measure.

The ’evaluating’ dimension assesses a designer’s ability to
determine the relevance and reliability of information. Ratio-
nales with high ’evaluating’ scores identified information derived
from product testing or user interviews. For example, the ratio-
nale behind the container in a blender, ”to support the design
of the blender’s container, comes from numerous user tests and
feedback.” Rationales with high ’analyzing’ scores indicated an
ability to extract patterns from data that could be used as ev-
idence, while ’synthesizing’ is the ability to connect informa-
tion. For example, ”Users remarked on the importance of seeing
their food as it’s blended, ensuring proper texture and consis-
tency - suggesting transparent material.” Meanwhile, ’structure’
assesses holistically the degree to which evidence and reason-
ing are clearly linked. ’Validity’ identifies the degree to which
a claim, evidence, and reasoning are consistent with disciplinary
standards (in this case, engineering design). Validity relies on
domain expertise and experience in design.

4.2 The majority of linguistic features across FSE and
unstructured differed (n=2250)

For each condition (unstructured and FSE), the Coh-metrix
indices were averaged and tested to determine which linguis-
tic features were statistically different between the two groups
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TABLE 3. Means, t-statistic, and p-values for the five dimensions.

MFSE MUnstr T-stat P-Value

Evaluating 4.23 1.28 44.9 2e-179

Analyzing 4.16 2.54 19.1 8e-62

Synthesizing 4.27 2.70 19.7 8e-65

Structure 4.56 2.91 21.1 2e-71

Validity 4.11 2.05 25.8 1e-94

FIGURE 2. Average ratings for FSE and Unstructured for each of
the five dimensions of rationale quality: a) evaluating, b) analyzing, c)
synthesizing, d) structure, and e) validity.

using Kruskal-Wallis tests. Eighty-one of the 108 Coh-matrix
indices had p-values less than .05, which means these linguis-
tic features were different across the two conditions, which was
unlikely due to chance. The condensed list of 11 categories is
shown in Figure 1 although the detailed list and definitions are
detailed in [13]. The indices from Coh-metrix with the largest
H-statistic, meaning the most significant difference of normal-
ized means, are shown in Table 4.

The analysis of six Coh-Metrix indices at a high level re-
vealed intriguing insights into the characteristics of design ratio-
nales and their quality (Figure 3). Firstly, the indices DESWC
(Word count), WRDHYPnv (Hypernymy for nouns and verbs),
and PCTEMPp (Temporal cues and consistency) were positively
correlated with increased rationale quality. A higher word count
may indicate more detailed information, offering deeper insights
into the design decision-making process. Similarly, greater hy-

TABLE 4. Means, H-statistic, and p-values for the six most distinct
Coh-metric indices.

MFSE MUnstr H-stat P-Value

Word count
(DESWC)

163 147 531 2e-117

Hypernymy for
nouns and verbs
(WRDHYPnv)

2.53 2.33 457 1e-101

Temporal cues
and consistency
(PCTEMPp)

45.5 71.9 414 6e-92

Temporal cohesion
(SMTEMP)

.831 .926 395 8e-88

Adverb incidence
(WRDADV)

35.8 48.0 287 2e-64

Pronoun incidence
(WRDADV)

11.4 18.2 274 1e-61

pernymy for nouns and verbs suggests a higher level of abstrac-
tion and conceptual clarity within the rationale, contributing to
its coherence and effectiveness. Moreover, texts with more cues
about temporality and consistent temporality are easier to pro-
cess, aligning with prior literature suggesting that temporal co-
hesion enhances the reader’s comprehension and situational un-
derstanding of textual events.

Conversely, SMTEMP (Temporal cohesion), WRDADV
(Adverb incidence), and WRDPRO (Pronoun incidence) resulted
in negative correlations with rationale quality. Decreased tempo-
ral cohesion, characterized by tense and aspect repetition, may
indicate a lack of clarity or coherence in the timeline of events de-
scribed within the rationale. Moreover, higher incidence scores
of adverbs and pronouns could potentially signify verbosity or
ambiguity within the rationale, hindering its clarity and effec-
tiveness in communicating design decisions. These findings un-
derscore the importance of coherence, clarity, and conciseness in
design rationales, as reflected by their specific linguistic features
extracted through the Coh-Metrix analysis. Further exploration
of the other linguistic features may offer valuable insights into
enhancing design rationales’ quality and communicative efficacy
in various contexts, ultimately contributing to more informed de-
sign decision-making processes. Aside from enhancing design
communication for human designers, computational agents or
generative rationale tools could use these indices to guide the
writing characteristics that good explanations or rationale should
contain.
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FIGURE 3. Scatter plots for the top six Coh-metrix indices plotted
against the average rating for the five dimensions of quality. Each data
point represents one design rationale (n=512).

4.3 Towards model development combining ratings
and indices

To work towards building a model to automatically evalu-
ate the quality of design rationales, both human evaluations and
Coh-metrix indices were combined. Figure 3 plots the top six
indices with the average ratings across the five dimensions of
quality (evaluating, analyzing, synthesizing, structure, and va-
lidity) as part of the feature selection process. Their correlation
coefficient (spearman’s rho) and p-values are shown.

Root Mean Squared Error (RMSE) is the primary means for
model comparison. Table 5 shows the RSME results for each
of the five rubric dimensions. The RMSE represents the root
mean squared difference between the predicted and actual val-
ues. A lower RMSE is generally better, indicating less error be-
tween predicted and actual values. Seven models were compared
against the baseline model (dummy regressor). The DummyRe-
gressor generates predictions without considering the input fea-
tures, serving as a reference point for comparison against more
complex regression models. For three of the five dimensions,
linear regression with PCA and regularization showed the lowest
RMSE (i.e., evaluating, synthesizing, and validity). A gradient-
boosting machine model without PCA best predicted the ana-
lyzing dimension. Random forest models performed best when
predicting structure values.

5 DISCUSSION
The study has three main findings: first, that FSE structured

rationales were rater higher than unstructured rationales across
the five dimensions; second, identification of the most distinc-
tive linguistic features across FSE and unstructured conditions
using an NLP approach (Coh-metrix); and lastly, preliminary re-

sults for a predictive model that evaluated design rationale qual-
ity. The following section discusses the findings, implications
for design research, and limitations.

The statistical tests between FSE and unstructured were sta-
tistically significant across each of the five dimensions (n=512)
[11], meaning that the rating differences were not due to chance.
The comparison between unstructured and structured design ra-
tionales resulted in statistically significant differences in per-
ceived quality and effectiveness. On average, unstructured ratio-
nales received lower ratings, showcasing the impact that struc-
tured representations of design rationale can have. In firsthand
analyses of the generated rationales, unstructured rationales were
noted to often focus on describing the form and function of
the product without delving into the underlying decision-making
processes. These lower-rated rationales are aligned with what
might appear in student reports or patent data, reinforcing the
need to improve the norms in education and practice [15]. Of-
ten, these descriptions are associated with the product’s function,
structure, or behavior [18]. While the FBS information is helpful
in the broader design process, the information does not provide
reasoning or justifications for a design decision.

In contrast, FSE structured rationales connected their design
decisions with evidence and information obtained throughout the
design process. This finding suggests that structuring design ra-
tionales according to the FSE framework facilitates the integra-
tion of critical thinking elements, such as evidence-based rea-
soning and justification, into the explanatory nature of rationales.
For example, in Section 3.1, evidence supporting the designer’s
decision stems from several reliable and valid methods that a de-
signer would use, such as interviews, background research, and
product testing.

Moreover, of the 108 total linguistic features extracted
from the Coh-metrix analysis from the total rationale dataset
(n=2250), 81 were statistically different. Meaning that these in-
dices compared across both conditions were not due to chance.
Thus, there are fundamental differences linguistically across the
two conditions. These features, coupled with human ratings, en-
abled feature selection to be performed, resulting in seven ML
models that were compared and evaluated. The features were
selected based on their predictive power and interpretability.

Each extracted Coh-metrix feature contains sufficient docu-
mentation on approaches to increasing or decreasing those rat-
ings from a writing standpoint. Lei et al. have shown the rele-
vance of using Coh-metrix to assist technical students in improv-
ing their writing [19]. Future work will build on the models in
this study. The remaining questions include whether rationale
quality should have these five dimensions or be condensed into
a holistic measure. For example, the dimensions could be av-
eraged, multiplied, or contain differing weights to produce an
overall measure like the innovation measure [20].
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TABLE 5. Root Mean Squared Error (RMSE) for the five rubric dimensions across eight models. The bolded value represents the model that had the
lowest RMSE for a given dimension.

evaluating analyzing synthesizing structure validity

Model 1: Dummy Regressor 1.61 1.28 1.23 1.26 1.39

Model 2: Linear Regression without PCA 7.20 11.1 9.99 10.6 12.0

Model 3: Linear Regression with PCA 1.20 1.20 1.16 1.23 1.19

Model 4: Linear Regression with PCA and Regularization 1.19 1.19 1.15 1.22 1.19

Model 5: Random Forest without PCA 1.24 1.20 1.17 1.19 1.22

Model 6: Random Forest with PCA 1.32 1.20 1.17 1.21 1.22

Model 7: GBM without PCA 1.30 1.18 1.17 1.26 1.21

Model 8: Best GBM with PCA 1.25 1.21 1.16 1.23 1.21

5.1 Design rationale contents and structure
This paper adopted Lee’s definition of design rationale, in-

cluding not only the justification for a design decision but also the
consideration of alternatives, tradeoffs, and the argumentation
process [2]. In reality, most design rationales—whether human
or machine-generated— often fall short of including all these el-
ements. Across the machine-generated rationales and prior work
with human-generated rationales [15], the content frequently in-
cluded descriptions of a product feature. Better-rated rationales
included argumentation linking how the feature meets the de-
sired specifications. For instance, regarding the rationale behind
a battery in a hearing aid, ”considering the target user group,
comprising primarily of the elderly, the battery design adheres
to easy handling principles. It ensures users can comfortably
change the battery themselves without encountering challenges
linked with fine motor skills decline.” This excerpt says the de-
sign ensures comfortable changing of the battery, but empirical
evidence from the design process is absent. An improved version
might include the alternatives considered and more information
on how they were evaluated (tradeoffs).

In situating the rationales generated in this study within the
broader design rationale research, it is important to acknowledge
other characteristics of design rationale that could impact percep-
tions of quality, such as the type of logical reasoning used (de-
ductive, inductive, abductive) [21]. Deductive reasoning might
use ergonomic principles to justify which design is better with-
out actually testing with users. Inductive reasoning might use
information from product testing of two designs to justify which
is better at meeting user needs. Abductive reasoning might jus-
tify the decision with some of the least amount of information
available, an educated guess. Dong et al. showed that the logical
framing structure significantly influenced design decisions [5].
In user-centered design, usability testing methods mainly rely on
inductive reasoning by observing user interactions and collecting

data across different contexts [22].
Documenting design rationale is essential, but what infor-

mation to include and at what level of detail is not standardized in
teaching or practice [23]. The lack of specificity of what should
be included in a design rationale can be attributed to the differing
use cases and representations [24]. This paper generated ratio-
nales using the feature, specification, and evidence framework.
However, several alternative representations of design rationale
exist in the broader literature. Two dominant process-based rep-
resentations include issue-based information system (IBIS) [25]
and Questions, Options, Criteria (QOC) [26]. Both are more ex-
pressive and laborious than the FSE framework, often requiring
graphical network software [27]. These alternative representa-
tions could be evaluated in future work using human or machine
evaluations outlined in this paper.

5.2 Implications
5.2.1 Design research Engineering design research

commonly relies on verbal and written data from engineers
and designers to understand underlying processes and decision-
making, often captured in project reports or think-aloud proto-
cols. This reliance assumes that engineers and designers are good
communicators, and thus, their rationales and explanations are
ground truth. How can we accurately compare rationales if no
standards or methods exist to evaluate these rationales or expla-
nations? This research shows the FSE framework as a means
to improve rationale quality. Moreover, the preliminary models
presented provide a tool for evaluating the rationale quality. The
design research community can leverage this tool to character-
ize and evaluate both human-generated rationales and machine-
generated rationales. Educators could implement the FSE struc-
ture in reporting standards for design classes or use the compu-
tational tool to evaluate rationale quality to help students iterate
on their rationale writing abilities.
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5.2.2 Human-AI teaming Machines can assist de-
signers by making design suggestions often based on human be-
havior (e.g., alternative CAD designs). Such suggestions often
mimic human behavior but can not adequately explain the ra-
tionale behind the design recommendation. Therefore, there is
a need to supplement automated design recommendations with
design rationale [28]. Overall, this research aims to address this
research gap by providing standards for ’higher-quality’ design
rationale to justify the design recommendations being made by
computational agents. Building on prior research that demon-
strates human explanations have a large variance in quality [15],
our findings advocate for the integration of the FSE framework
and computational tools to improve generative rationales.

This research highlights the capability of GPT models to
generate adequate rationale, with potential for future refinement.
Future iterations could refine the prompt instructions (2)to more
closely align with Lee’s definition of design rationale, which in-
cludes alternatives considered and tradeoffs evaluated. Addition-
ally, the computational tool can evaluate the quality of rationale
generated throughout the prompt-engineering process. This ap-
proach can characterize and assess different representations of
design rationale, such as IBIS or QOC [25, 26]. The tool en-
hances existing methods for capturing design rationale and holds
promise for shaping new approaches for generative rationale.

5.3 Limitations and future work
The study, while able to differentiate differences between

the two groups, has limitations regarding the generation of the
dataset, the rubric, and the quantity of data points. Since they
are machine-generated, GPT-generated rationales pose concerns
about response variability and empirical validity. Distributions
of linguistic features showed that the responses did not cover the
entire realm of possibilities, meaning that machine-generated re-
sponses are likely to have less variability than human-generated
rationales. In future work, human-generated rationale collection
must address potential confounding variables, such as incom-
plete information and variability in design rationale representa-
tions (e.g., images, words). The decision to use GPT-generated
rationales removed the guesswork from researchers in trying to
identify what is and is not rationale in a report.

Moreover, rubric selection poses limitations since alterna-
tive rubrics could have been utilized. For example, a simplified
holistic rubric could be utilized similar to that of the SAT [29] or
a more granular rubric with more dimensions or a more exten-
sive range (i.e., 0 to 100). A rubric uses ordinal data; however,
since we used the mean of two raters, the ratings were treated as
continuous variables. Considering the study also tested the struc-
turing of design rationale using the feature, specification, and
evidence framework, careful consideration was given regarding
feature selection so as not to bias the model with features tied to
the FSE components.

Due to the textual nature of the data, interpretable and ex-
plainable NLP and ML approaches were considered. Early anal-
yses explored BERT embeddings, TF-IDF, NER, and POS ap-
proaches, which generated enormous amounts of features that,
while they may be significant in this dataset, raised concerns re-
garding interpretability and generalizability. Lastly, only a por-
tion of the 2250 rationales were evaluated for this conference
paper (n=512) in which preliminary results were shown. Fu-
ture work will finish the evaluation across the entire dataset (n
= 2250) and iterate on the model. The Akaike Information Cri-
terion (AIC) and the Bayes Information Criterion (BIC) will be
used in addition to RSME for model comparison. Models with
lower AIC and BIC scores are more parsimonious and thus avoid
overfitting and reduce capturing irrelevant features or noise in the
data. Therefore, iterating on the model should produce a compu-
tational approach to measure rationale quality.

6 CONCLUSION
Design rationales are the justifications behind a product or

feature. The structure and content included in rationales impact
their quality. A dataset of 2250 design rationales was collected,
and a randomly selected subset of the data was evaluated by two
raters (n=512) on five dimensions of quality. Rationales were
then characterized using natural language processing techniques.
Results show that rationales represented in a feature, specifica-
tion, and evidence format were rated higher than unstructured
rationales on the five dimensions of evaluating, analyzing, syn-
thesizing, structure, and validity. Parameter fitting and model
comparison were used to identify the most relevant and distin-
guishable features to build a preliminary model that can compu-
tationally evaluate design rationales.
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Appendix A: Supplemental Tables

TABLE 6. List of personas. Full descriptions are not shown.

Title (Experience Level)

Mechanical Engineer (Entry-Level)

Industrial Designer (Senior Level)

Automotive Engineer (Mid-Level)

User Experience (UX) Designer (Mid-Level)

Product Development Engineer (Senior Level)

Systems Engineer (Entry-Level)

Sustainable Design Specialist (Mid-Level)

Research and Development Engineer (Senior Level)

Product Designer (Entry-Level)

TABLE 7. Rubric dimensions.

Category Description

Evaluating Ability to determine relevance and reli-
ability of information to support an ar-
gument(i.e., whether they successfully
created the desired product.

Analyzing Ability to extract patterns from
data/information that could be used as
evidence for their claims.

Synthesizing Ability to connect information to make
a claim.

Forming
Arguments
(Structure)

Degree in which their decision, ev-
idence, and reasoning are explicitly
stated and clearly linked.

Forming
Arguments
(Validity)

Degree to which their claim, evidence,
and reasoning are consistent with ac-
cepted disciplinary ideas and practices.
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