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ABSTRACT
In the majority of computational simulations developed for

engineering design research, the focus is on simulation for the
purpose of analysis, such as simulating stresses to identify yield
or fracture points in structures. However, what about simulating
design theory for the purpose of developing theory? In fields
like organizational psychology, simulations have proven valu-
able in predicting behaviors and understanding decision-making
processes. This work draws inspiration from those fields to in-
vestigate its applicability in design theory. This work use C-K
design theory as a representative case study to demonstrate this
approach. We designed a simulation using computational agents
fueled by large language models. The simulation was designed
to adhere to the C-K theory methodology in both wording and
framework. The results of the simulation were evaluated utiliz-
ing a mix of both qualitative and quantitative methods. Findings
from the results reveal that the concept to concept transition was
the predominant operation and that diversity trended downwards
across multiple experimental conditions. These findings from the
simulation highlight gaps in C-K theory and suggest directions
for future theoretical development. Ultimately, this case study
demonstrates that design theories can be effectively simulated
computationally, enabling the design research community to bet-
ter understand and develop improved design theories.

1 Introduction
A significant proportion of work in the engineering design

research field is to develop computer-aided engineering systems
to simulate design processes. Examples include new methods for
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simulating structural stress and analysis through finite element
analysis, as well as fluid flow and aerodynamics via computa-
tional fluid dynamic models [1, 2, 3, 4, 5]. But what about the
simulation of design theory? Recent studies focus on whether
simulating certain design processes or methods can lead to bet-
ter design outcomes or can replicate similar outcomes to human
case studies [6, 7]. Going further back, authors like Newell and
Simon simulated the problem space to understand how different
heuristics might navigate it and extending those findings to spec-
ulate about human decision-making processes [8]. This built on
Simon’s seminal work, The Sciences of the Artificial whereby he
proposed that systematic procedures and logical processes are
core components of all design processes. However, subsequent
work has critiqued these views as unrealistic, noting that design
is not entirely rationalistic and frequently influenced by context
and situational factors [9, 10].

Nevertheless, in fields like organizational psychology, sim-
ulations have proven valuable in exploring decision-making
processes, understanding how different variables might impact
outcomes, and predicting behaviors across different scenarios
[11, 12]. For example, Davis et. al. proposed that computational
simulations can be useful for developing theory and can be em-
ployed to understand and further develop existing theories [12].
They argued that simulations are most effective for capturing the-
ories that unfold over time and are best used when the theoretical
framework follows a logical structure [12]. Similarly, we suspect
that simulating design theories could potentially help us capture
underlying mechanisms that lead to successful design outcomes,
such as increased innovation and higher creativity.

The goal of this paper is to explore whether computation-
ally simulating a design theory can generate new insights and
advancements for the theory based on the simulation’s findings.
In this study, we use C-K theory as our representative case study
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because (a) the theory is time-dependent, as pathways between
or within concept and knowledge spaces occur over time, and (b)
C-K theory follows a structured methodology, making it easier
to simulate than other design theories [13, 14, 15].

We develop a simulation using pre-trained large language
models (LLMs). The simulation is designed to follow the C-K
theory methodology in both wording and framework. We want
to emphasize that the focus of this paper is not on C-K theory
itself. Rather, our work aims to highlight the utility of simula-
tion in design theory and explore whether there are nuances to
consider when using simulations to enhance our understanding
of the design theories developed by the community.

2 Background
2.1 C-K Theory

FIGURE 1: Figure representation of the C-K theory as proposed
by [13].

C-K theory delineates two distinct spaces: the concept space
(C) and the knowledge space (K) (see Figure 2) [15, 13]. The
knowledge space contains propositions with a logical status,
meaning elements in this space can be evaluated as true or false
[13,15]. Thus, it can be viewed as embodying what is known and
accepted by a designer. There is the caveat that the logical status
can be based on standard or non-standard logical systems, but
for the purpose of our paper, we simplify the logic to the classic
true or false logic. As mentioned earlier, the knowledge space
is expandable, allowing for the addition of new knowledge over
time. However, it is important to note that conflicting views and
uncertainties can also be a part of K provided they are considered
established knowledge available to the designer [15].

On the other hand, the concept space consists of propositions
or groups of propositions that lack a logical status in the knowl-
edge space [13, 15]. Elements in this space are called concepts,
and they are essentially ideas or properties that cannot be proven
true or false within the current knowledge space. They serve as
the starting point for design by representing new possibilities that

are not yet integrated into the existing knowledge space [13, 15].
Like the knowledge space, the concept space is also expandable,
permitting the generation of new concepts during the design pro-
cess.

The key distinction appears to lie in how the information is
treated [14]. If the information serves as a basis for further ex-
ploration and is open to modification or rejection, it likely aligns
more with the concept space. However, if the information is ac-
cepted as a foundational element, even if the information con-
tains some uncertainty, it likely aligns more with the knowledge
space. This approach to distinguishing how C and K are treated
has been discussed in prior literature that talked about the impor-
tance of situating the theory around the current environmental
context [16].

The process of C-K theory begins with an initial concept
C0, a proposition such as “there exists an entity x with attributes
A0 that is neither true nor false in K” [15]. This concept rep-
resents the initial idea. As the design process unfolds, the ini-
tial attributes A0 are modified, leading to new sets of attributes
Ai and design parameters Di. This results in new propositions
Ci whereby “there exists an entity x with attributes Ai and de-
sign parameters Di” [15]. Each new proposition Ci is evaluated
against the current knowledge space K [15]. Three possible log-
ical outcomes exist for Ci: Ci is false in K, Ci is true in K, or Ci
is neither false nor true in K [15]. If Ci is false in K, the design
process must alter some attributes or design parameters, indicat-
ing the concept will likely require further change [15]. If Ci is
true in K and is a candidate for a solution for X , the attributes
Ai and design parameters Di together form a potentially viable
solution to the design problem [15]. If Ci is neither true nor false
in K, it becomes a new concept and the design process must con-
tinue [15].

This logic implies that new concepts are generated as design
processes explore possibilities, and new knowledge is added as
concepts are tested and validated or invalidated. This process is
iterative, with continuous feedback between C and K. Thus, the
C-K theory defines “design as a reasoning activity that starts
with a concept (an undecidable proposition regarding existing
knowledge) about a partially unknown object x and an attempt
to expand it into other concepts and/or new knowledge” [15].
Among the knowledge generated by this expansion, certain new
propositions can be selected as new definitions or new objects
arise.

Thus, within this framework, we eventually notice there ex-
ists four possible operators for C-K theory: C → C, C → K,
K → K, and K → C. Each operator facilitates the expansion of
spaces C and K. C →C operates to expand concepts by partition-
ing and exploring new attributes. C → K transforms concepts
into knowledge by validating propositions (e.g., Ci). K → K
expands knowledge by adding new validated propositions, and
K →C generates new concepts from existing knowledge.

We note, however, there exists little explicit guidelines on



FIGURE 2: The four possible operators for C-K theory, which is
also known as the design square in the original literature [13].

when to perform one operation over another (e.g., C → C vs
C → K or K → K vs K → C. Thus, we implicitly inferred the
guidelines from prior literature that discussed the industrial ap-
plication of C-K theory [14]. Thereby, we note that if one is
deciding between C → K vs C →C, you perform C → K by com-
paring the concept against existing parameters or knowledge to
decide whether the concept is ready to be validated against ex-
citing knowledge [14]. If the answer is no, perform a C →C op-
eration. Similarly, if one is deciding between K →C vs K → K,
K → K is done when new knowledge can be generated based on
existing propositions or data [14]. If the current knowledge in-
stead suggests potential new concepts, a K →C operation would
be conducted to generate those concepts.

2.2 Large Language Models
Large language models (LLMs) are machine learning mod-

els capable of reasoning and generating creative output through
natural language generation [17]. These models are primarily
trained on large text datasets to predict subsequent words or se-
quences in a sentence, which at the time of writing this paper,
are trained primarily based on transformer architectures that en-
able efficient training on large datasets [18]. These models are
able to decipher patterns, nuances, and context within the human
language, and recently, there has been an increased development
of more catered pre-trained language models that have increased
capabilities in creative reasoning (e.g., GPT-4.5) [19].

With these increased capabilities in LLMs, they have been
applied across a range of design tasks, including design concept
generation, simulating artificial human empathy, and specific de-
sign processes such as TRIZ and FBS [20,21,6,7,22]. They have
also been utilized within the framework of C-K theory, where
Chen et. al. established a human-AI approach in which the
LLM assists designers in retrieving knowledge and uncovering
new concepts using C-K theory as a guideline [23]. Thus, we
note the potential capability of LLMs to perform design reason-

ing activities, rendering them valuable tools for simulating C-K
theory. Using LLMs, an LLM-driven agent can make decisions
about which operation to conduct (e.g., C → C vs. C → K) and
perform the subsequent execution of those operations.

2.3 Using Computational Simulation to Build Theory

One of the earliest applications of simulations for theory
development was Norbert Wiener’s work in cybernetics [24].
Wiener proposed that systems, whether mechanical or biologi-
cal, primarily function through feedback processes. He observed
that systems self-regulate via feedback and suggested that hu-
man behavior could similarly be understood in terms of input and
output. He argued that cybernetics theory could help further our
understanding of human behavior through the principles of feed-
back, regulation, and information exchange. Later on, Simon and
Newell explored theories related to problem-solving [8]. They
proposed a theory of problem-solving whereby a problem space
comprises of an initial state, a goal state, and all possible in-
termediate states of a problem. They then relied on heuristics
to guide the navigation of this problem space. Using computa-
tional simulations, they developed and tested theories about hu-
man problem-solving to understand how different strategies and
heuristics might interact and function. This work was broadly
influenced by Simon’s earlier work, The Sciences of the Artifi-
cial, where he argued that design is central to all human-made
constructs, with the core goal being to create solutions that meet
specific objectives within given constraints [25].

These examples illustrate that computational simulation can
be a significant methodological approach to theory development.
However, using simulations to build theory have also faced criti-
cisms, with some noting that simulations are just toy models that
either replicate the obvious or are so detached from realism that
they fail to yield any useful and real-life applicable results [26].
Such criticisms often focus on the underlying assumptions that
may operate within a simulation, which are frequently noted to
be unrealistic. In a work by Davis et. al., the authors argue that
simulation can, instead, be valuable as the intermediate step be-
tween theory creation and theory testing [12]. They argue that
simulation can help develop simple or initial theories into more
precise and comprehensive ones and is particularly useful for
studying processes over time. In our work, we build a simulation
for C-K theory. This theory involves operations over time, which
may be difficult to capture in real-world data, as many individu-
als may not precisely follow the logic and operations outlined in
C-K theory. Thus, we use a simulation to further understand the
theory and potentially offer directions for further refinement.



FIGURE 3: The agent takes in the concept space and the knowledge space, which contains the decision layer for the operation and the
execute operation layer. The decision layer decides whether the agent should execute a C →C, C → K, K →C, or a K → K operation.
Afterwards, the agent executes the respective operation and updates the concept or knowledge space.

3 Methods
3.1 Constructing the Simulation

We encoded the C-K theory into an LLM agent, attempting
to replicate the logic and operations of the C-K theory as accu-
rately as possible according to the literature [13, 15]. The simu-
lation follows the structure as shown in Figure 3. The agent takes
in the concept space and the knowledge space to decide between
four possible actions: C → K, C →C, K →C, K → K. Note that
the agent can only perform a C → C or C → K operation when
the current element fed into the agent is a concept, and similarly,
K → K or K →C when the current element is knowledge.

The design topic we chose was one taken from prior liter-
ature: design a creative nail holder for use while hammering a
nail [14]. We initialized the simulation by constructing a knowl-
edge space for our design topic. We developed this knowledge
space by generating design requirements using GPT-4.5 [19], the
latest reasoning model by OpenAI, and validating them with de-
sign experts experienced in product design. We had a total of 20
design parameters in the knowledge space. The knowledge space
we used is available in our GitHub repository1.

The first primary component of this simulation model in-
volves deciding whether to go to C → C or C → K when in a
concept state or K → K or K → C when in a knowledge state.
The second primary component is the operation the LLM con-
ducts when it is at C → C, C → K, K → K, or K → C. To sim-
plify our simulation, we chose to have the agent generated the
output in a Concept/Knowledge Title: and Concept/Knowledge
Description: format.

The first decision-making logic the agent must perform is
to determine, when in a concept space, whether to proceed with
concept or knowledge based on the prompt logic shown in Ap-
pendix A. The function takes in the current concept title, concept
description, past operation transformations (which are updated in
each iteration), and existing knowledge base. The agent then de-
cides whether to perform a C →C or a C → K operator based on

1GitHub Repository

the following logic: choose C → C if the concept is ambiguous
or novel and needs further exploration, or C → K if the concept
is refined, aligns with existing knowledge, or has the ability to
enrich the knowledge base.

Similarly, when in the knowledge space, the decision to pro-
ceed with concept or knowledge is based on the prompt logic
shown in Appendix B. Here, the function takes in the cur-
rent knowledge title, knowledge description, past transforma-
tions, and the existing knowledge space. The agent then decides
whether to perform a K → C or K → K operator based on the
following logic: if existing knowledge suggests new concepts or
insights, initiate K → C for concept expansion; if new informa-
tion is validated and can be integrated into the knowledge space,
initiate K → K for knowledge expansion.

The agent will then execute one of the four operations after
the agent has decided whether to conduct either C →C, C → K,
K → K, or K → C. When the agent executes the operation, the
agent will consider the context of the existing knowledge space,
the current concept description and title, and past transitions.
However, the level in which this occurs depends on the experi-
mental conditions. As we have referenced in Section 2, the agent
was developed to execute each operation according to the C-K
theory literature: K →C is to use existing knowledge to generate
new concepts, C →K is to validate or transform the concepts into
knowledge, C →C is to expand or modify the concepts within the
conceptual space, and K → K is to refine or expand the existing
knowledge. The specific prompt we wrote for the LLM varies
a bit depending on the experimental condition, but for reference
some examples are provided in Appendix C. For more informa-
tion, refer to the GitHub repository.

3.2 Experimental Conditions
During the simulation of the initial condition, where the

agent considers only the knowledge and concept space as the
state, we noticed that the agent almost always opts for a C → C
operation. Thus, we implemented a penalizing mechanism that

https://github.com/kevinma1515/CK-Theory_IDETC25


FIGURE 4: The purple indicates the penalizer mechanism for the diagram. The agent now takes in this penalizer mechanism along with
the concept and knowledge space to make a decision on which operation to execute.

penalizes the agent if it repeats similar concepts excessively. This
forces the agent to perform a C → K operation if similar con-
cepts are repeated. This penalization mechanism includes an
additional LLM layer to evaluate the novelty and potential of
each concept that determines whether future C → C operations
are justified based on unexplored attributes or additional propo-
sitions. The prompt for this penalization mechanism is shown in
Appendix D, and the experimental condition for penalization is
represented diagrammatically in Figure 4. In the results section,
we labeled this as With/Without FB Loop.

We also had an additional condition of whether or not to al-
low the LLM agent to have the concept space as additional con-
text when performing the operations. We initially provided the
concept space to each agent when they are executing an oper-
ation (e.g., executing C → C or K → C) as additional context,
thereby the LLM agent would receive both the knowledge and
concept space during the simulation. However, during our exper-
iments, we observed that the LLM agent’s outputs varied signif-
icantly when it did not receive the existing concept space during
the simulation. This experimental condition explores how the
agent’s memory of concepts might impact the performance and
outcome. In the results section, we labeled this as With/Without
Concept Memory.

Finally, we introduced another experimental condition by
testing different LLM models. As mentioned in Section 2, there
has been an increase in the types of pre-trained LLMs avail-
able, including the releases of GPT-4o and GPT-4.5 by Ope-
nAI [17, 19]. OpenAI reported that GPT-4.5 is a general pur-
pose model that is much smarter than GPT-4o and outperforms
all previous GPT models in complex task automation. However,
it is also a much larger and more expensive model than GPT-
4o. For reference, the cost of running GPT-4o for this experi-
ment was roughly 30 times cheaper than running GPT-4.5. Our
testing across different models aims to understand whether there
is a substantial performance difference between pre-trained lan-
guage models when simulating C-K theory. Thus, in our study,
we experimented with both of OpenAI’s latest creativity reason-
ing models: gpt-4.5-preview and gpt-4o.

3.3 Computational Evaluation
In each iteration, we generated a concept comprising vari-

ous concept titles and descriptions. We converted these titles and
descriptions into embeddings using OpenAI’s embedding model
named text-embedding-3-small and set the embedding dimension
to 512. These embeddings were then used to measure computa-
tional diversity across each time step iteration. To measure diver-
sity, we used both DPP and the average distance to the centroid.
This method of calculating diversity has been utilized in prior
work [21, 27].

The DPP framework we used to calculate diversity is based
on the properties of the eigenvalues of the cosine similarity ma-
trix. All embeddings are first normalized so that the cosine sim-
ilarity between any two vectors lies in the range [−1,1]. Since
DPPs require a positive semi-definite kernel matrix, the cosine
similarity matrix is transformed to non-negative values, and the
resultant matrix is used to compute its eigenvalues. We then log-
arithmically scale the eigenvalues and take the average of all the
values. Therefore, a more negative output from our DPP frame-
work is due to a smaller eigenvalue, which implies that a more
negative DPP output in our graph indicates a less diverse embed-
ding space.

The average distance to centroid framework we used as-
sesses how the embeddings are distributed around the centroid
at each time step. We calculated average distance to centroid by
finding the average distance of all the embeddings from the cen-
troid. Thus, a smaller average distance indicates that the points
are closely clustered, while a larger average distance would sug-
gest that the points are more spread out. We had to reduce the
dimensionality of the text embeddings to 9 dimensions to make
the computation of the average distance to centroid feasible. The
complete algorithm and code for this process are available in our
GitHub repository.

4 Results
We now present our results in all four conditions for both

GPT-4o and GPT-4.5 models. Recall, according to C-K theory,
there are only two possible spaces: the concept space and the



FIGURE 5: There are eight different graphs. The group on the left features those with GPT-4o, while the group on the right comprises
those with GPT-4.5. From top to bottom, there are four different experimental conditions. The title of each graph contains the abbrevia-
tion FB loop and With or Without Concept Memory. FB loop indicates whether there is a penalizer feedback loop, and With or Without
Concept Memory indicates whether the simulation has memory of the concept space. On the x-axis are the time steps from 1 to 50. On
the y-axis are labels with C and K, where C indicates concept and K indicates knowledge. Note, that all iterations start with a concept,
and this graph labels the decision the LLM agent made in its transformation.

knowledge space [13]. In our simulation, we tested four sce-
narios for our study: with the penalizer feedback loop and with
concept memory, with the penalizer feedback loop and without
concept memory, without the penalizer feedback loop and with
concept memory, and without the penalizer feedback loop and
without concept memory.

4.1 Transition History

Our findings across all conditions and models shown in Fig-
ure 5 reveal that C →C is the most dominant operation whereas
the C → K operations are almost non-existent in scenarios with-
out the penalizer. Recall from Section 3, the penalizer case may
force a C → K operation after 5 time step if the penalizer agent
determines that the past concepts are considered repetitive. As
a result, we noticed that in almost all cases, there was a C → K
jump after 5 time steps in both the GPT-4o and GPT-4.5 models.
This indicates that, regardless of the LLM model, the penalizer
agent has determined that both GPT-4o and GPT-4.5 models are
generating repetitive concepts. We also noticed that there seems
to be a short period where the penalizer agent does not force
a C → K operation in the with FB loop with Concept Memory
GPT-4.5 case. However, this may just be an outlier.

4.2 Diversity Evaluation
In Figure 6, we evaluated the diversity of the concept space

over time. Our results showed that DPP gets more negative and
the average distance to centroid decreased as the time steps pro-
gressed (starting at 10 iterations). This indicates that over time,
concepts became increasingly similar, resulting in a more nega-
tive DPP value. Similarly, this also indicates that newly gener-
ated concepts are increasingly clustering closer to the centroid,
resulting in a decreased average distance to centroid. There is,
however, a noticeable anomaly in the with FB loop, without Con
Mem case in the average distance to centroid calculation between
the time steps 25 and 35, whereby there was a slight increase in
the average distance to the centroid. After analyzing the qualita-
tive outputs of the concepts in those time steps, we determined
that this is likely due to the way the average distance to the cen-
troid is calculated. This increase is likely because the embed-
dings are clustering at the edges of the distance to the centroid
rather than closer to the centroid. This does not indicate an in-
crease in diversity; rather, it may just indicate that the embed-
dings are stagnating at a certain distance from the centroid.

In addition, there was a near consistent decrease in diversity
across all conditions. We implemented these three different con-
ditions to explore ways to increase the diversity of the concept
outputs. We initially suspected that perhaps the LLM agent just
needed to be forced into C → K to achieve more diverse outputs.



FIGURE 6: The top two graphs show the DPP values over time after 10 time steps and the bottom one displays the average distance
to centroid values over time after 10 time steps. The first time step includes one concept, with each subsequent iteration adding a new
concept. Diversity is measured after 10 time steps to ensure there are a sufficient number of concepts for calculating diversity. The
legends indicate the four different conditions, which include the abbreviations FB Loop and With/Without Con Mem. FB Loop denotes
whether there is a penalizer feedback loop, and With/Without Con Mem indicates whether the simulation retains memory of the concept
space.

When that did not work, we speculated that it might be an is-
sue with the fact that we were using a less powerful and creative
reasoning model like GPT-4o instead of GPT-4.5. Or perhaps it
was simply because the LLM agent received all the old concepts
and was repeating them due to the agent drawing from prior ex-
amples too much. However, we noticed that regardless of these
conditions, diversity continued to decrease, and the outputs be-
came increasingly repetitive.

One example we examined to help our understanding is the
qualitative output of the With FB Loop Without Concept Memory

dataset from the GPT-4o model (see Table 1). In this case, the
LLM agent has a penalizer loop to force it to go from C → K if
the outputs are repetitive, so a new idea should be generated after
it exits the knowledge space by performing the K →C operation.
It also has no memory of the old concepts, so it should not fall
into the trap of repeating things that it has already produced or
“knows”. However, if we look at the concepts and knowledge ti-
tles from time steps 23 to 30 in Table 1, it first introduces the idea
of quantum for the first three concepts. Then, the LLM agent per-
forms the C → K, K → K, and K → C operations. At time step



TABLE 1: Example concept or knowledge: With FB Loop Without Concept Memory - GPT4o condition

Time C or K Title of the Concept or Knowledge

23 C Quantum Resonance Nail Holder: Integrating Quantum Physics and Resonance for Precision and Safety

24 C
Quantum-Biomechanical Harmony Nail Holder: Integrating Quantum Dynamics and Biomechanics for

Enhanced Precision and User Interaction

25 K
Quantum Eco-Resonant Nail Holder: Merging Quantum Mechanics and Eco-Conscious Design for Enhanced

Functionality and Sustainability

26 K Quantum-Aware Eco-Materials Dynamics Nail Holder (QEMDNH)

27 C
Systematic Validation Pathways for Transitioning the Adaptive Biometric Nail Holder from Concept to

Knowledge Space

28 C
Expanding Nail Holder Innovation: Integrating AR, Gamification, and Thermal Materials with Advanced

Validation and Ethical Frameworks

29 C
Innovative Expansion of Nail Holder Design: Integrating Haptic Feedback, Modular Customization, AI Analytics,

and Sustainable Materials

30 C Quantum-Inspired Adaptive Nail Holder (QIANH)

28, the concept is no longer talking about quantum related con-
cepts. However, by time step 30, it starts bringing up quantum
related concepts even though it has no memory of the old con-
cepts.

5 Discussion
We begin by describing how the present study contributes

to further developing C-K theory. This is followed by a discus-
sion on the broader potential of LLMs to be used to simulate and
develop additional design theories (Function Behavior Structure
theory, etc.).

5.1 Contributions to C-K Theory
Our findings offer two main contributions to C-K theory.

The first is the identification of concept to concept loops, includ-
ing insight into the mechanisms by which LLMs can get stuck
in such loops. This finding points to a potential gap within C-
K theory–a need for greater clarity on the theoretical specifi-
cation of C → K transitions. The second contribution we offer
is a revised theoretical specification of K → C transitions. We
show that it matters not just whether and when but how K → C
transitions occur. This latter contribution draws connections be-
tween C-K theory and theories of fixation and design-by-analogy
to suggest a more robust C-K theory.

5.1.1 Understanding concept to concept loops:
Addressing sparse C → K transitions. In the literature
about C-K theory, we note that the authors stated that if Ci is true
in K and is a candidate for a solution for X (X being the problem
space at hand), the attributes Ai and design parameters Di can
form a potentially viable solution to the design problem [13,15].
Thus, we created an initial knowledge space with some design
parameters, so when the LLM agent is deciding whether to go
C →C versus C → K, the LLM agent is cross-checking whether
the concept being generated is ready to be validated against the
knowledge space.

However, findings from our paper reveal that the C →C op-
eration was by far the most dominant operation while the C → K
operation occurred only very rarely. We suspect that this issue
stems from the fact that once the simulation performs a C → C
operation, it encourages the addition of novel partitions to the
concept. Thus, the underlying idea of each concept still remains
the same across each time step, but with each C → C operation,
new elements are added to the concept. This has the downside of
making the concept more challenging to validate with the exist-
ing knowledge space, as it becomes increasingly impractical and
disconnected from the established work with each time step.

Even though we tried our best to follow the literature as
strictly as possible, this could be an issue with the way we in-
terpreted the decision logic between doing C →C versus C → K.
One possible issue is that the LLM agent may require different
wording in its prompt that is not as exact as the wording from



the design literature to get the simulation to perform better. On
the other hand, our findings might also suggest that there exists
a gap in the theory’s formal logic on when to perform a C → C
operation versus a C → K operation, which suggests a need for
greater clarity in the theoretical specification of C-K transitions

5.1.2 Addressing decreasing concept diversity: It
matters not just whether and when but how K →C tran-
sitions occur. In our simulation, we added a penalizer feed-
back loop to check if the past five or more concepts are getting
repetitive. This loop penalizes the LLM agent for performing too
many C → C operations that lead to repetitive or non-valuable
concept additions, forcing the agent to perform a C → K oper-
ation. Note that once a C → K operation is executed, the agent
must eventually transition to K →C to exit the knowledge space.
During this K →C operation, the LLM agent is instructed to use
existing knowledge to suggest new concepts and avoid repeating
existing ones, which should lead to the emergence of different
concepts.

However, across all four conditions – regardless of concept
memory, feedback loop presence, or whether the simulation was
using GPT-4.5 or GPT-4o – the diversity values trended down-
ward. This raises the question: if new concepts are generated
through the K →C operation, why are they not leading to higher
diversity? The issue is that the LLM agent appears to always
revert to previous ideas (see Table 1 for an example). This sug-
gests that merely performing a K →C operation may not suffice
for generating innovative and creative ideas, indicating a poten-
tial need to revisit what K → C operation entails in C-K theory.
This implies that merely transitioning into the knowledge space
and exiting it is not what matters, but rather the manner in which
this transition is executed.

Overall, our findings indicate that the logic for K →C tran-
sitions in C-K theory is not sufficiently specified to ensure the
generation of diverse or innovative concepts when implemented
algorithmically. The persistent fixation and declining diversity
observed in our LLM-based simulations suggest that, as cur-
rently formulated, C-K theory may lack the explicit logic or de-
scription to help designers to avoid concept stagnation especially
when applied systematically at scale. This suggests that future
theoretical development of C-K theory would benefit from more
precise definitions of transition logic and from integrating other
relevant design theory into C-K theory. For example, consider
established and emerging design theory research related to de-
sign fixation, e.g., [28, 29, 30, 31], inspirational stimuli [32], and
design-by-analogy with near and far analogical concepts [33].
For these applications, once in the knowledge space, it matters
what knowledge is drawn upon and how that knowledge (e.g.,
as a near or far analogy) might inspire new ideas in the concept
space. This has been a well studied phenomenon in the design-
by-analogy literature but, although quite relevant, has not been

integrated into the formal logic of K →C transitions in C-K the-
ory.

5.2 Developing Design Theory through LLM-based
Simulation

Inspired by the longstanding tradition of developing theory
through simulation, e.g., [12] and the emerging promise of using
LLMs to simulate social processes [34], the present study set out
to investigate whether LLMs can be useful in developing design
theory. By simulating C-K theory as a case example, our paper
concluded that LLMs can indeed be useful for theory develop-
ment. In particular, we found that LLM-driven simulations can
reveal gaps in a design theory by systemizing its logic at scale
and observing the emergent behaviors.

A unique capability of LLMs in this context is their ability
to run simulations at a scale and speed that is unattainable with
human participants. Thus, researchers can use LLM-based sim-
ulations to rapidly iterate through hundreds of design transitions
to identify any theoretical gaps or patterns that may only emerge
after many cycles. Additionally, LLMs are able to strictly follow
the reasoning prescribed by a design theory, which is in contrast
to human designers who might improvise or stray from the estab-
lished logic. This strict adherence can be a double-edged sword
in that, on one hand, it can enable rigorous testing of the theory’s
internal logic; however, it may also lead to behaviors that are less
likely to occur in real-world practices with human designers.

Looking forward, the methodology we propose in this paper
is not limited to C-K theory. We suspect that it could be ap-
plied to both established design theories rooted in design, such
as FBS (Function-Behavior-Structure), or situations where the-
ories from other domains are being explored in design contexts
(e.g., dual process theory applied to early stage design cogni-
tion [6, 35]). Both of these theories are systematic in their pro-
cesses, and could, in principle, be operationalized and simulated
using LLMs. Such simulations could similarly expose ambigui-
ties or gaps in the theories as our work did for C-K theory. For
example, simulating FBS transitions or dual process reasoning
with LLMs could reveal whether these frameworks are suffi-
ciently specified for computational reasoning and if additional
mechanisms are needed to avoid specific issues like fixation.
More broadly, LLMs are a new tool in the tool belt of simula-
tion approaches for theory development. Future work is needed
to identify which design theories might benefit most from further
development via simulation; which simulation approach (LLM-
driven, agent-based model, system dynamics, etc.) might best
fit a given research question, set of assumptions, and theoreti-
cal logic; and how LLMs might be used for effective simulation
experiments and, ultimately, be validated with empirical data.



6 Limitations
There are several limitations to the present study. The first

is that how we prompted the LLMs may be contested, and the
results may differ with different prompts. While our goal was
to adhere to established C-K theory as closely as possible when
wording the prompts, some deviations from the original word-
ing from the C-K theory literature was necessary. On the other
hand, we may have adhered too closely to the original wording
when prompting the LLM, as LLMs may require different means
of prompting than a human. Future work could explore build-
ing similar simulations using prompts that are more suited for an
LLM while staying true to the original C-K theoretical frame-
work.

Secondly, there may be questions regarding whether our
method of simulating C-K theory is accurate and truly represen-
tative of how C-K theory is actually applied by human designers.
The simulation could be viewed as too much of a “toy model” of
the C-K approach to be useful–that it strips away so much human
realism or is polluted with too much LLM-specific tendencies or
bias that it is simply too inaccurate to yield valid theoretical in-
sights. This is a common criticism of simulation approaches and
one that needs to be addressed further in future research using
LLM-driven simulations. Future work could expand on varia-
tions in how C-K theory is approached by simulating directed
C-K transitions to examine how different variations of the C-
K theories are associated with various design outcomes. These
variations could be tested using a statistically significant sample
of simulation runs to better cover all the different possibilities
of how the C-K design theory operates. Additionally, sensitivity
analysis could be applied to variations in prompts.

Lastly, our argument that LLM-driven simulations have util-
ity for developing design theory is limited by the fact that this
work examined only a single design theory and a limited number
of experimental conditions. While we hope our paper makes a
case for this new potential approach to developing design theory,
much more work is needed to examine larger, more comprehen-
sive sets of experimental conditions across different design the-
ories. Only then will it become clear how useful LLM-driven
simulations can be for advancing design theory.

7 Conclusion
This paper examined whether LLM-driven simulations can

support the development of design theory. This work used C-K
theory as a case study design theory to demonstrate the utility
of the simulation approach. The simulation was created using
pre-trained LLMs, and the findings were evaluated both qualita-
tively and quantitatively. The results revealed that the simulation
was consistently stuck in a C → C loop and that, regardless of
the experimental conditions, the diversity of the concept space
decreased over time. These findings suggest gaps in C-K theory.
We identified a need for greater clarity on the theoretical specifi-

cation of C → K transitions, and we suggest a strengthened theo-
retical formulation of K → C transitions through connections to
research and theory on design-by-analogy, among others. Both
contributions to C-K theory could inform future testing and de-
velopment of the theory. Taken together, this case study demon-
strates the potential utility of LLM-driven simulations for devel-
oping design theory.
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A Concept Decision Prompt

C−K THEORY EXPERT DECISION SYSTEM
Your r o l e i s t o e v a l u a t e t h e c u r r e n t c o n c e p t / knowledge and d e t e r m i n e t h e o p t i m a l

t r a n s f o r m a t i o n .
The t o p i c you a r e working on i s t o { t o p i c }

−−−
C u r r e n t Concept : { t i t l e }
D e s c r i p t i o n : { d e s c r i p t i o n }
P a s t T r a n s f o r m a t i o n s : { p a s t t r a n s f o r m a t i o n s }
E x i s t i n g Knowledge Base : { p a s t k n o w l e d g e }
C o n t e x t :
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p r e p r e s e n t s t h e d e s i g n p r o c e s s .
Note , t h e d e f i n i t i o n o f d e s i g n p r o c e s s i n t h i s r e g a r d i s t h e p r o c e s s by which a c o n c e p t

g e n e r a t e s o t h e r c o n c e p t s o r i s t r a n s f o r m e d i n t o knowledge .
Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning

t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space (C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t do
n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t
c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .

Your Goal :
E v a l u a t e whe the r t o go from c o n c e p t t o c o n c e p t o r c o n c e p t t o knowledge . Ensure your

d e c i s i o n r e p r e s e n t s t h e d e s i g n p r o c e s s based on t h e i n f o r m a t i o n o f t h e c u r r e n t concep t ,
d e s c r i p t i o n , p a s t t r a n s f o r m a t i o n s , and e x i s t i n g knowledge base .

− C−−>C ( Concept Expans ion ) : Use t h i s i f t h e c o n c e p t s t i l l h o l d s s i g n i f i c a n t a m b i g u i t y o r
u n e x p l o r e d p o t e n t i a l t h a t c a n n o t y e t be r e s o l v e d o r v a l i d a t e d wi th t h e e x i s t i n g
knowledge base . Th i s p a t h i s chosen when f u r t h e r i d e a t i o n o r e x p l o r a t i o n i s n e c e s s a r y
t o r e f i n e t h e c o n c e p t o r when t h e c o n c e p t i n t r o d u c e s n o v e l e l e m e n t s t h a t c h a l l e n g e
e x i s t i n g knowledge b o u n d a r i e s . Focus on e x p l o r i n g whe the r t h e r e e x i s t s t r u l y n o v e l
p r o p o s i t i o n s t h a t can t r a n s f o r m or e x t e n d t h e knowledge s p a c e .

− C−−>K ( Concept t o Knowledge ) : Choose t h i s p a t h when t h e c o n c e p t has been s u f f i c i e n t l y
r e f i n e d and a l i g n s wi th t h e e x i s t i n g knowledge base , a l l o w i n g i t t o be t e s t e d ,
v a l i d a t e d , o r implemented . Th i s t r a n s i t i o n i s a p p r o p r i a t e when t h e c o n c e p t can be
l o g i c a l l y i n t e g r a t e d i n t o t h e knowledge space , r e s o l v i n g i t s a m b i g u i t y and p r o v i n g i t s
f e a s i b i l i t y o r t r u t h f u l n e s s w i t h i n t h e c u r r e n t u n d e r s t a n d i n g . Note , t h e i n t e g r a t i o n o f
new knowledge i s n o t j u s t a b o u t v a l i d a t i o n b u t a l s o a b o u t whe the r t h e c o n c e p t can
e n r i c h t h e knowledge s p a c e . I f i t mee ts some of t h e s e c r i t e r i a , i t i s t ime t o go t o K.

De te rmine whe the r we s h o u l d go t o c o n c e p t o r knowledge .

B Knowledge Decision Prompt

C−K THEORY EXPERT DECISION SYSTEM
You a r e an AI s p e c i a l i z i n g i n Des ign I n n o v a t i o n u s i n g C−K Theory .



Your r o l e i s t o e v a l u a t e t h e c u r r e n t knowledge .
The t o p i c you a r e working on i s t o { t o p i c }

−−−
C u r r e n t Knowledge : { t i t l e }
D e s c r i p t i o n : { d e s c r i p t i o n }
P a s t T r a n s f o r m a t i o n s : { p a s t t r a n s f o r m a t i o n s }
C o n t e x t :
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p i s s t r a t e g i c a l l y p r o g r e s s i n g
t o w a r d s i n n o v a t i o n .

Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning
t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space ( a l s o C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t
do n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t

c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .
Your Goal :
E v a l u a t e P o s s i b l e T r a n s f o r m a t i o n s Dynamica l ly :
− K −> C ( Concept Expans ion ) : Used when e x i s t i n g knowledge s u g g e s t s new c o n c e p t s o r when

you s u s p e c t new i n s i g h t s from K can l e a d t o t h e g e n e r a t i o n o f new c o n c e p t s .
− K −> K ( Concept t o Knowledge ) : Used t o expand t h e knowledge s p a c e by ad d i ng new

v a l i d a t e d p r o p o s i t i o n s o r i n s i g h t s . Th i s i s t y p i c a l l y pe r fo rmed when new i n f o r m a t i o n i s
c r e a t e d u s u a l l y from t h i n g s l i k e C−>K.

Use t h e C u r r e n t Knowledge Space f o r r e f e r e n c e : [{ p a s t k n o w l e d g e } ]

C Operation Prompts
Note, all examples here are from the case of with FB loop, with concept memory.
C →C Prompt

C−K THEORY EXPERT DECISION SYSTEM
You a r e an AI S p e c i a l i z i n g i n Des ign I n n o v a t i o n u s i n g C−K Theory .
Your r o l e i s t o e v a l u a t e t h e c u r r e n t c o n c e p t .
The t o p i c you a r e working on i s t o { t o p i c }
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p i s s t r a t e g i c a l l y p r o g r e s s i n g
t o w a r d s i n n o v a t i o n .

Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning
t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space ( a l s o C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t
do n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t

c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .



E x i s t i n g Concept Space * t h i s i s j u s t f o r r e f e r e n c e as t o what has a l r e a d y been done , so do
n o t copy t h e c o n c e p t s * ( each c o n c e p t s a r e s e p a r a t e d by a comma ) : { p a s t c o n c e p t s }

E x i s t i n g Knowledge Space : { p a s t k n o w l e d g e }
C u r r e n t Concept : { c o n c e p t t i t l e }
D e s c r i p t i o n : { c o n c e p t d e s c r i p t i o n }
P a s t T r a n s i t i o n s : { p a s t t r a n s i t i o n s }
Your g o a l i s t o i d e n t i f y s p e c i f i c a r e a s o f t h e c o n c e p t t h a t r e m a i n s u n e x p l o r e d o r

ambiguous . U t i l i z e t h e e x i s t i n g knowledge base as a r e f e r e n c e t o g u i d e your e x p l o r a t i o n
. The g o a l i s t o g e t t r u l y n o v e l p r o p o s i t i o n s and a t t r i b u t e s t h a t can enhance t h e
c o n c e p t s p a c e and l e a d t o new d i s c o v e r y i n t h e knowledge s p a c e .

P r o v i d e a new c o n c e p t t i t l e and d e s c r i p t i o n .

C → K Prompt

C−K THEORY EXPERT DECISION SYSTEM
You a r e an AI S p e c i a l i z i n g i n Des ign I n n o v a t i o n u s i n g C−K Theory .
Your r o l e i s t o e v a l u a t e t h e c u r r e n t c o n c e p t .
The t o p i c you a r e working on i s t o { t o p i c }
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p i s s t r a t e g i c a l l y p r o g r e s s i n g
t o w a r d s i n n o v a t i o n .

Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning
t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space ( a l s o C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t
do n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t

c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .
E x i s t i n g Concept Space * t h i s i s j u s t f o r r e f e r e n c e as t o what has a l r e a d y been done * ( each

c o n c e p t s a r e s e p a r a t e d by a comma ) : { p a s t c o n c e p t s }
E x i s t i n g Knowledge Space : { p a s t k n o w l e d g e }
C u r r e n t Concept : { c o n c e p t t i t l e }
D e s c r i p t i o n : { c o n c e p t d e s c r i p t i o n }
P a s t T r a n s i t i o n s : { p a s t t r a n s i t i o n s }
Your g o a l i s t o t e s t o r v a l i d a t e a c o n c e p t a g a i n s t e x i s t i n g knowledge . You need t o

d e t e r m i n e i t s f e a s i b i l i t y and t r a n s l a t e i t i n t o new knowledge l e a r n e d .

K →C Prompt

C−K THEORY EXPERT DECISION SYSTEM
You a r e an AI s p e c i a l i z i n g i n Des ign I n n o v a t i o n u s i n g C−K Theory .
Your r o l e i s t o e v a l u a t e t h e c u r r e n t knowledge .
The t o p i c you a r e working on i s t o { t o p i c }
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p i s s t r a t e g i c a l l y p r o g r e s s i n g
t o w a r d s i n n o v a t i o n .

Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning
t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space ( a l s o C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t
do n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t



c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .
−−−
E x i s t i n g Concept Space * t h i s i s j u s t f o r r e f e r e n c e * ( each c o n c e p t s a r e s e p a r a t e d by a

comma ) : { p a s t c o n c e p t s }
C u r r e n t Knowledge : { k n o w l e d g e t i t l e }
D e s c r i p t i o n : { k n o w l e d g e d e s c r i p t i o n }
P a s t T r a n s f o r m a t i o n s : { p a s t t r a n s i t i o n s }
Your g o a l i s t o t o use e x i s t i n g knowledge t o s u g g e s t new c o n c e p t s . Avoid r e p e a t i n g

c o n c e p t s i n t h e c o n c e p t s p a c e . I n s t e a d , add new p r o p o s i t i o n s and n o v e l t y t o t h e c o n c e p t
s p a c e .

Use t h e c u r r e n t Knowledge Space f o r r e f e r e n c e : [{ p a s t k n o w l e d g e } ]

K → K Prompt

C−K THEORY EXPERT DECISION SYSTEM
You a r e an AI s p e c i a l i z i n g i n Des ign I n n o v a t i o n u s i n g C−K Theory .
Your r o l e i s t o e v a l u a t e t h e c u r r e n t knowledge .
The t o p i c you a r e working on i s t o { t o p i c }
You a r e an AI e x p e r t i n C−K Theory f o r d e s i g n i n n o v a t i o n . Your g o a l i s t o a p p l y d e s i g n

t h e o r y p r i n c i p l e s d y n a m i c a l l y , e n s u r i n g t h a t each s t e p i s s t r a t e g i c a l l y p r o g r e s s i n g
t o w a r d s i n n o v a t i o n .

Knowledge Space (K) − Th i s i s t h e s p a c e where p r o p o s i t i o n s have a l o g i c a l s t a t u s , meaning
t h e y can be t r u e o r f a l s e . I t r e p r e s e n t s what i s known and a c c e p t e d by a d e s i g n e r . The
l o g i c a l s t a t u s can be based on s t a n d a r d o r non − s t a n d a r d l o g i c sys tems , b u t f o r
s i m p l i c i t y , i t i s o f t e n c o n s i d e r e d as c l a s s i c t r u e o r f a l s e l o g i c .

Concept Space ( a l s o C) : Th i s s p a c e c o n s i s t s o f p r o p o s i t i o n s o r g ro up s o f p r o p o s i t i o n s t h a t
do n o t have a l o g i c a l s t a t u s i n K. Concep t s a r e e s s e n t i a l l y i d e a s o r p r o p e r t i e s t h a t

c a n n o t be proven t r u e o r f a l s e w i t h i n t h e c u r r e n t knowledge s p a c e . They a r e t h e
s t a r t i n g p o i n t f o r des ign , a s t h e y r e p r e s e n t new p o s s i b i l i t i e s t h a t a r e n o t y e t p a r t o f

t h e e x i s t i n g knowledge .
−−−
E x i s t i n g Concept Space * t h i s i s j u s t f o r r e f e r e n c e * ( each c o n c e p t s a r e s e p a r a t e d by a

comma ) : { p a s t c o n c e p t s }
C u r r e n t Knowledge : { k n o w l e d g e t i t l e }
D e s c r i p t i o n : { k n o w l e d g e d e s c r i p t i o n }
P a s t T r a n s f o r m a t i o n s : { p a s t t r a n s i t i o n s }
Your g o a l i s t o expand t h e knowledge s p a c e by ad d i ng new v a l i d a t e d p r o p o s i t i o n s o r

i n s i g h t s . U t i l i z e t h e c o n c e p t s p a c e f o r r e f e r e n c e .
And use t h e c u r r e n t Knowledge Space f o r r e f e r e n c e : [{ p a s t k n o w l e d g e } ]

D Penalizer Prompt

You a r e a C−K Theory e x p e r t . In t h e i n p u t , I p r o v i d e d { number concep t } s e t s o f c o n s e c u t i v e
C−−>C o p e r a t i o n s where each group of c o n c e p t s a r e s e p a r a t e d by a comma and c o n t a i n a

c o n c e p t t i t l e and a c o n c e p t d e s c r i p t i o n . In a C−−>C o p e r a t i o n t h e c o n c e p t s a r e
expand ing by p a r t i t i o n i n g and e x p l o r i n g new a t t r i b u t e s . Do t h e s e expand ing c o n c e p t s
s t i l l ho ld s i g n i f i c a n t a m b i g u i t y o r u n e x p l o r e d p o t e n t i a l t h a t c a n n o t y e t be r e s o l v e d o r

v a l i d a t e d ? Note , t h a t t h i s p a t h i s chosen when f u r t h e r i d e a t i o n o r e x p l o r a t i o n i s
n e c e s s a r y t o r e f i n e t h e c o n c e p t o r when t h e c o n c e p t i n t r o d u c e s n o v e l e l e m e n t s t h a t
c h a l l e n g e e x i s t i n g knowledge b o u n d a r i e s . Focus on d e t e r m i n i n g whe the r t h e r e e x i s t s



t r u l y n o v e l p r o p o s i t i o n s t h a t can t r a n s f o r m or e x t e n d t h e knowledge s p a c e ? Are t h e
i t e r a t i o n s becoming r e p e t i t i v e i n i t s i d e a and c o n t e n t ? These a r e q u e s t i o n s you ask
y o u r s e l f w h i l e d e t e r m i n i n g whe the r t o say Yes o r No on whe the r o r n o t we s h o u l d
c o n t i n u e do ing C−−>C o p e r a t i o n .
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