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ABSTRACT
As inspirational stimuli can assist designers with achieving

enhanced design outcomes, supporting the retrieval of impactful
sources of inspiration is important. Existing methods facilitating
this retrieval have relied mostly on semantic relationships, e.g.,
analogical distances. Increasingly, data-driven methods can be
leveraged to represent diverse stimuli in terms of multi-modal in-
formation, enabling designers to access stimuli in terms of less ex-
plored, non-text-based relationships. Toward improved retrieval
of multi-modal representations of inspirational stimuli, this work
compares human-evaluated and computationally derived similar-
ities between stimuli in terms of non-text-based visual and func-
tional features. A human subjects study (n=36) was conducted
where similarity assessments between triplets of 3D-model parts
were collected and used to construct psychological embedding
spaces. Distances between unique part embeddings were used to
represent similarities in terms of visual and functional features.
Obtained distances were compared with computed distances be-
tween embeddings of the same stimuli generated using artificial
intelligence (AI)-based deep-learning approaches. When used to
assess similarity in appearance and function, these representa-
tions were found to be largely consistent, with highest agreement
found when assessing pairs of stimuli with low similarity. Align-
ment between models was otherwise lower when identifying the
same pairs of stimuli with higher levels of similarity. Importantly,
qualitative data also revealed insights regarding how humans
made similarity assessments, including more abstract informa-
tion not captured using AI-based approaches. Toward providing
inspiration to designers that considers design problems, ideas,
and solutions in terms of non-text-based relationships, further
exploration of how these relationships are represented and eval-
uated is encouraged.

Keywords: Inspirational stimuli, Data-driven design, Design
representation

1. INTRODUCTION

To support early-stage design processes, external sources of
inspiration can assist designers toward achieving desirable out-
comes. The impact of inspirational stimuli, most notably analo-
gies, on design processes has been well studied due to their po-
tential to retrieve relevant concepts from long-term memory and
aid conceptual design [1]. By studying these processes, features
of inspirational stimuli that can lead to beneficial outcomes such
as increased novelty, feasibility, or innovativeness of ideas (e.g.,
[2–4]) can be determined. As methods to retrieve inspirational
stimuli for designers rely increasingly on large datasets and data-
driven techniques [5], improved understanding of how to discover
and select relevant stimuli is needed. In particular, Jiang et al. in
a recent review on data-driven design-by-analogy (DbA) propose
that, beyond textual data, other modalities such as visual infor-
mation (2D-image or 3D-model datasets) should be utilized to
support visual or multi-modal DbA [5].

One implementation of data-driven methods for the retrieval
of multi-modal inspirational stimuli was explored in prior work
from our team [6]. In this work, deep-neural networks model-
ing visual and functional relationships between 3D-model parts
were used in a multi-modal search platform for inspiration discov-
ery. In two subsequent user studies, designers using this system
searched for stimuli in terms of appearance and function-based
similarities to a specified input and were frequently returned re-
sults they did not expect [7]. These findings motivate the aim
of the present study to improve representation of non-text-based
measures of similarity, which have not been widely studied in in-
teractive settings. Currently, there is limited knowledge regarding
how relationships defined in terms of non-textual properties of
inspirational stimuli align with human representations. Increased
availability, interest, and use of 2D-image and 3D-model datasets
encourage the development of tools enabling discovery of de-
sign stimuli related to an input by non-text-based features rather
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than semantic distances. Our approach is to compare human and
AI-based representations of non-text-based definitions of similar-
ity to increase understanding of these less explored measures of
similarity. Representations of similarity are compared through
one central research aim: How consistent and aligned are hu-
man and AI-based representations of non-text-based similarities
of inspirational stimuli?

This research question is studied considering 3D-model parts
as a source of design relevant inspiration, which contain both vi-
sual and functional information. A human subjects study was
conducted (n=36) where human assessments of similarity of 3D-
model parts by visual and functional features were collected in
a triplet rating task. The alignment and consistency across hu-
man and computational representations of visual and functional
similarities are evaluated. Additional insight into a comparison
of these representations is revealed through qualitative analysis.
Understanding how computational methods may agree with and
differ from human representations of non-text-based relationships
between inspirational stimuli can support the effective retrieval of
relevant and impactful sources of inspiration for designers based
on non-textual information.

2. RELATED WORKS
Motivating the study of multi-modal representations of simi-

larity in this paper, prior work on multi-modal inspirational design
stimuli and methods and tools enabling their retrieval is reviewed.

2.1 Impact of Multi-Modal Inspirational Stimuli
The modality in which a stimulus is represented to designers

can differently influence design outcomes. Several examples of
past work have investigated designer’s interactions with multi-
modal stimuli. Borgianni et al. studied the impact of stimulus
form on idea generation by presenting textual, pictorial, or com-
bined stimuli [8, 9]. Findings encourage the presentation of mul-
tiple forms of stimuli to designers due to the diversity and limited
overlap of ideas generated by participants exposed to different
forms of stimuli. Designers tend to prefer visual information
[10, 11], which Linsey et al. found can lead to increased idea
novelty [12]. Han et al. suggest that images combined with un-
related semantic elements can promote creative idea generation
[13], while using pictorial stimuli was found by Malaga et al.
to outperform the use of words alone for enhanced creativity of
ideas [14]. In general, interacting with visual stimuli can impor-
tantly trigger formation of new mental images, which can support
generation of new design ideas [15]. These studies demonstrate
the value of providing multi-modal, e.g., pictorial, stimuli to de-
signers. In the current study, 3D-model parts are proposed as
another form of inspirational stimuli containing both visual and
functional attributes. Human and computational representations
of relationships between these parts are investigated to support
designers’ interactions with these stimuli. In the next section,
methods enabling their representation and retrieval are explored.

2.2 Enabling Retrieval of Inspirational Stimuli
To provide designers with relevant sources of inspiration,

similarity relationships between designer inputs and potential

stimuli need to be defined. Defining similarities to support data-
driven DbA has been most widely studied in the context of deriv-
ing analogical distances between source and target domains [5].
Computational methods are often used to retrieve design stim-
uli with varying analogical distances to a given design problem
or designer specified input. Similarity relationships specifically
relying on textual information can be derived. For instance, text-
based processing has been used to define function-based simi-
larity between design problems and solutions from patents [16],
to define contextual similarity between patents [3, 17], or to as-
sign function-based topics to patents based on different semantic
themes [18, 19]. Semantic networks used during engineering de-
sign activities can facilitate exploration and retrieval of analogies
consisting of common words, such as in WordNet or Concept-
Net [20], or technology-based knowledge from patent texts in the
Technology Semantic Network (TechNet) [21].

However, beyond processing of textual information, there
is increasing interest in using AI to represent and retrieve stim-
uli from 2D-image and 3D-model datasets [5]. These stimuli
can support multi-modal analogy for design inspiration. Sketch-
based retrieval of visually similar examples can importantly sup-
port visual analogy [22, 23]. Zhang and Jin used an unsupervised
deep-learning model to construct a latent space for a dataset of
sketches [23]. Image-based search using visual similarity can
also extract relevant examples from sources such as patent doc-
uments [24, 25]. Jiang et al. constructed a convolutional neu-
ral network-based model to derive a vector space where feature
vectors embed visual and technology-related information from
patent images [25]. Other sketch-based user interfaces include
DreamSketch, which provides designers with 3D-modeled design
solutions based on early stage 2D-sketch-based designs [26] or
SketchSoup, which inputs rough sketches and generates new sets
of sketches to inspire further concept generation [27]. Design
ideas represented in 3D can be recognized by tools such as the
InspireMe interface, which provides suggestions for new com-
ponents to add to a designer’s initial 3D model [28]. Kim et al.
developed a co-creative sketching artificial-intelligence (AI) part-
ner that provides inspirational sketches related by visual and con-
ceptual similarity to designer-drawn sketches [29]. The effects of
providing sketches with varying levels of visual and conceptual
similarity to the designer’s sketch were investigated [30]. In our
prior work, deep learning was applied to develop deep-neural
networks modeling visual and functional relationships between
3D-model parts in a large dataset [6]. These neural networks
were used to construct a multi-modal search platform, through
which designers’ search for inspiration was examined.

Using AI to represent multi-modal stimuli in terms of non-
text-based features can increase their utilization as sources of
design inspiration. As well, designers’ interactions with multi-
modal inputs (e.g., sketch or 3D-model based) can be better en-
abled. Ensuring that computational methods used to define non-
text-based relationships appropriately represent how humans per-
ceive these similarities is the primary aim motivating this work.
This aim is achieved by conducting a human subjects study, as de-
scribed in the following section, to model human representations
of visual and functional similarities between inspirational stimuli
and by performing a comparison with AI-based representations.
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3. METHODS
To investigate the representation of inspirational stimuli in

terms of multi-modal information, visual and functional similari-
ties between 3D-model parts are explored in this work. Similarity
is described by distances between stimuli in embedding spaces
derived using two approaches. The first approach uses deep learn-
ing to construct neural networks modeling these relationships,
resulting in computational embedding spaces for a large dataset
of 3D-model parts (developed in prior work [6]). Presented in the
current work, the second approach uses human-evaluated simi-
larities of a selection of 3D-model parts to build psychological
embedding spaces of parts. A human subjects study (n=36) was
conducted to collect similarity assessments used to develop the
psychological embedding spaces for visual and functional rela-
tionships between 3D-model parts. Methods used to conduct the
study, construct the psychological embedding spaces, and analyze
post-task qualitative data are described in this section.

3.1 Experimental Design
This study consisted of two main tasks: a triplet rating task

and a categorization task, each completed twice (for each simi-
larity type explored). For one similarity type, participants com-
pleted 25 trials of the triplet rating task followed by the catego-
rization task. The same two tasks were then repeated for the other
stimulus set. The order of similarity type (visual or functional)
presented was counterbalanced across participants. Results of
the categorization task are not reported in the present work. Af-
ter completing each set of 25 triplet ratings, participants were
additionally asked to provide open-ended responses describing
the specific criteria used to assess visual or functional similarity.
Experimental details of the triplet-rating task are fully described
in Sec. 3.1.3. To determine which stimuli to present in these
tasks, two distinct sets of 16 3D-model parts were selected from

the computational embedding spaces with varying pairwise dis-
tances in either visual and functional similarity.

3.1.1 Participants. For this study, 36 participants (13 fe-
male, 22 male, 1 non-binary) were recruited including 14 grad-
uate students, 16 undergraduate students, and 6 industry profes-
sionals (with <1 to 9 years of experience). In prior work from
the authors, any impact of expertise when engaging with inspira-
tional stimuli was in their utilization in a structured design task
(not relevant to the current study) [31]. For the tasks completed,
no particular level of engineering design knowledge or experi-
ence was required and no analysis of differences in expertise was
conducted. Participants were recruited via email from among cur-
rent students in Mechanical Engineering as well as participants
who previously completed research studies related to engineering
design. Participants were compensated with $10 for their com-
pletion of the 30 minute study. This human subjects research
study has been approved by the Institutional Review Board at the
University of California, Berkeley.

3.1.2 Selection of Task Stimuli. The stimulus sets pro-
vided to participants in the study (see Fig. 1) were selected
by considering distances between 3D-model parts in the deep-
learning-based computational embedding spaces. These neural
networks were trained on 573,585 part instances belonging to
26,671 3D-model object assemblies across 24 object categories.
To encode visual similarity of 3D-model parts, the deep-learning
model takes 2D snapshots from various angles of each part to un-
derstand its geometric and physical form. The functional network
is developed by considering neighboring parts within a part’s re-
spective object assembly such that two parts are similar if they
share similar neighbors (e.g., a chair leg and back are function-
ally similar because a chair seat is a common neighbor). These
similarity definitions exclude the use of semantic information of

(a) Visual similarity stimulus set (b) Functional similarity stimulus set

FIGURE 1: STIMULI PRESENTED DURING TRIPLET RATING TASK
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individual parts. The development of these neural networks is
fully described in our past work [6].

Given the size and diversity of the full dataset, candidate
stimuli were restricted to “chair” and “table” object categories,
specifically considering chair seats, chair backs, and tabletops
(as labelled within the PartNet dataset [32]), resulting in 2043
possible parts. This was done to reduce the potential difficulty
of rating similarity between and categorizing very diverse ob-
jects (e.g., bottles and tables). Although task complexity is re-
duced as a result, ultimately, the aim of this selection of stimuli
was to encourage the assessment of similarity in terms of visual
and functional features only. This aim could be better achieved
without the influence of semantic information, including product
category. Potential limitations of the present findings related to
stimuli selection are discussed in Sec. 5.2.

The full 16-part stimulus sets selected to present in the triplet
rating and categorization tasks are shown in Fig.1, chosen based
on visual similarity in Fig.1a and functional similarity in Fig.1b.
Euclidean distances between parts in the computational embed-
ding spaces are used to represent how similar (low distance) or
dissimilar (high distance) parts are. While distances between
neighbors are not constant, neighboring parts (e.g., 1 and 2) are
always nearer in terms of pairwise distance than non-neighboring
parts (e.g., 1 and 5). By maintaining consistency in pairwise dis-
tances, we ensure that the stimulus sets used contain a diversity
of distances where all parts belong to both low and high distance
pairs.

3.1.3 Triplet Rating Task. Developing a psychological em-
bedding space that models human representations of a given stim-
ulus set requires the collection of many trials of human judgments.
A common task used to elicit these judgments is a triplet rating
task where one of two options is selected as being more similar
to a given reference. Prior work by Nandy & Goucher-Lambert
and Ahmed et al. have also used triplet similarity ratings to
generate embedding spaces for human representations of design
stimuli [33, 34]. Preceding each triplet rating task of 25 trials,
participants were told that “In the [first/second] section of this
study, you will consider the [function/appearance] of parts when
assessing similarity”. At the beginning of each trial, participants
were asked to “Select the option with the most similar part in
[function/appearance] to the reference part” with two options pre-
sented, such as in the example shown in Fig. 2. Participants were
instructed to make this selection based on the red-highlighted 3D-
model part in the object assembly. When considering functional
similarity, participants were told to consider the object the red
part belongs to, other neighboring parts in the object, and that
parts with high functional similarity may be used in the same
object and/or neighbor similar parts. For visual similarity trials,
no further detail was provided.

For the number of parts in each stimulus set (16), a total of
1680 unique triplet trials are possible. Ahmed et al. recommend
that a minimum of 30% of the full stimulus set is needed to
construct a robust embedding space of human representations
[34]. In our study, 36 participants completed 25 triplet ratings for
each stimulus set. Due to data collection errors and exclusion of
data from one participant who failed the attention check for the
visual similarity triplet rating task, a total of 801 trials for visual

FIGURE 2: EXAMPLE TRIPLET OF 3D-MODEL PARTS SHOWN TO
PARTICIPANTS

similarity and 826 trials for functional similarity were included,
constituting 48% and 49% of all potential trials.

3.2 Construction of Psychological Embedding Spaces
Using outcomes from the triplet rating tasks, psychological

embedding spaces were constructed. These models include two
layers: an embedding layer representing multidimensional fea-
tures, and a similarity kernel. The Python library PsiZ was used
to generate these models, which specifically handles behavioral
data such as triplet ratings to infer psychological embeddings
(https://github.com/psiz-org/psiz). The similarity kernel consists
of a distance function (weighted Minkowski distance) and a sim-
ilarity function (exponential decay in similarity with increased
distance). The use of this two-component kernel is motivated by
psychological theory and has been used to successfully represent
psychological embeddings [35]. Data was split into a training
set (80% of trials), test set (10%) and validation set (10%). The
number of dimensions for each model was determined by training
models with dimensions varying from two to ten. The highest
value at which validation set losses stopped improving for increas-
ing values of dimensionality was selected. The final psychologi-
cal embedding spaces for both visual and functional similarity are
two dimensional with consistent training/validation/test set losses
of 0.45/0.51/0.45 and 0.39/0.43/0.49, respectively. Constructing
these embedding spaces importantly enables the measurement of
distances between stimuli in terms of human representations for
comparison against computational representations of visual and
functional attributes.

3.3 Analysis of Qualitative Data
Following the completion of 25 trials of triplet ratings of

stimuli based on visual and functional similarity, participants
provided written open-ended responses to describe the criteria
they used to assess similarity. While evaluation criteria used
when employing deep learning can be speculated, exact defini-
tions for each dimension of these models are unknown. However,
deeper insight can be gained regarding how humans represent vi-
sual and functional information through qualitative post-task data
obtained. This analysis may help to inform future deployment of
computational methods to represent relationships based on multi-
modal information by understanding the features of inspirational
stimuli emphasized using each method. Criteria used across par-
ticipants to evaluate visual and functional similarity were coded
from the open-ended responses provided following an inductive
category formation approach [36]. Using this method of qual-
itative content analysis, criteria were defined to code responses
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where new criteria were formed if responses could not be sub-
sumed under previously defined criteria. Multiple criteria from
a participant’s response could be assigned to the same codes.
This process continued for all responses collected from all 36
participants and repeated for both similarity types evaluated.

Two coders, mechanical engineering graduate students each
with at least one publication in an engineering design journal,
coded the full dataset. Coder 1 manually coded all responses
using the described inductive category formation process. Coder
2 then validated the assignment of responses to the criteria iden-
tified by Coder 1 independently. Across both coding processes,
0.98 Cohen’s Kappa interrator reliability was achieved for visual
similarity and 0.82 for functional similarity, suggesting high con-
sistency between coders [37]. Differences in assigned codes were
discussed and resolved between coders. Details of both coding
outcomes are described in Sec. 4.3 to identify human evaluation
criteria used for visual and functional similarity.

4. RESULTS
The main research aim of this work is to compare the repre-

sentation of stimuli within embedding spaces constructed using
human and AI-based assessments of visual and functional sim-
ilarity. First, the newly constructed psychological embedding
spaces modeling human similarity assessments are presented in
Sec. 4.1. Two sets of analyses are then conducted to compare
these psychological embeddings with computational embeddings
of stimuli. The first analysis considers the consistency in defin-
ing pairwise distances from embedding spaces of both models
(Sec. 4.2.1). In the second analysis, stimulus pairs are ordered
in terms of pairwise distances, and assigned to levels of similar-
ity (1-5). Alignment between methods in assigning pairs to the
same levels is then investigated (Sec. 4.2.2). Supporting these
findings, qualitative findings are presented to uncover features of
of non-text-based similarities that may be specific to human or
computational representations (Sec. 4.3).

4.1 Examining Psychological Embedding Spaces
To enable the comparison of human and AI-based represen-

tations of inspirational stimuli by non-text-based relationships,
psychological embedding spaces are constructed, as described in
Sec. 3.2. These are visualized in Fig. 3 where plotted points
are numbered corresponding to parts in stimulus sets in Fig. 1.
Numbering of parts reveals how relationships between parts are
represented in computational spaces (as described in Sec. 3.1.2)
such that parts 1 and 2 are closer in distance than 1 and 5.

Inspecting psychological embedding spaces, several visually
related stimuli separated by low Euclidean distances in the com-
putational embedding space are more distant in Fig. 3a. Part
12, for instance, is closer to parts 9 and 10 in the psychologi-
cal embedding space than 13, which is a nearest neighbor to 12
in the computational embedding space. This may suggest low
agreement between visual similarity relationships represented by
both models. Parts are colored in terms of edge curvature, which
is one potential criteria used to evaluate visual similarity. Cri-
teria used by human participants to make both visual and func-
tional similarity assessments are presented in Sec. 4.3. Based

(a) Visual similarity of stimuli in Fig.1a by edge curvature

(b) Functional similarity of stimuli in Fig.1b by object part

FIGURE 3: VISUALIZATIONS OF PSYCHOLOGICAL EMBEDDING
SPACES REPRESENTING HUMAN-EVALUATED SIMILARITIES

on embedding space distances, computationally derived relation-
ships appear more preserved in terms of functional similarity, as
demonstrated by clusters of closely numbered parts in Fig. 3b. It
is evident from the separation of tabletops, chair backs, and chair
seats in Fig. 3b that humans relied on the object part when mak-
ing functional similarity judgments. Overall, by representing
these distances using human evaluations of similarity obtained
experimentally, the alignment with deep-learning methods can
be determined.
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In the following section, further examination of agreement
between these representations is conducted to gain insight into
defining relationships in terms of multi-modal information.

4.2 Agreement between Human and Computational
Representations of Similarity
Responding to the main research question posed in this work,

this study focuses on determining the agreement between human
and AI-based representations of visual and functional similarity.
Two sets of stimuli consisting of 16 3D-model parts are con-
sidered, as shown in Fig. 1. Across these stimuli, there are 120
unique pairs in each stimulus set, where visual attributes are eval-
uated for one stimulus set (Fig. 1a) and functional attributes for
the other (Fig. 1b). In total, four models are considered: one
computational and one psychological embedding space for each
of the visual and functional similarity stimulus sets. The agree-
ment between these representations of similarity is evaluated for
each similarity type using measures of consistency and align-
ment. Consistency is assessed in terms of computing pairwise
distances and alignment in assigning pairs to low to high ranging
levels of similarity.

4.2.1 Consistency between Pairwise Similarities. The
first method used to describe the agreement between human and
computational representations of visual and functional similari-
ties is by comparing pairwise distances. Two metrics are used to
compare range-normalized pairwise distances derived from psy-
chological and computational embedding spaces: Pearson corre-
lation, 𝑟 , and Cronbach’s alpha coefficient, 𝛼. Both metrics, in
the context of interrater reliability, measure the consistency be-
tween raters in measuring a common dimension [37]. To compare
embedding space distances, these metrics reveal whether the two
models are consistent in what is being assessed, but not necessar-
ily that the computed distances exactly agree. The relationship
between range-normalized pairwise distances in psychological
and computational embedding spaces are visualized in Fig. 4,
for visual similarity (Fig. 4a) and functional similarity (Fig. 4b).
Assignment of pairs by distance to five similarity levels, through
a process described in Sec. 4.2.2, is also shown. There are signif-
icant positive correlations between pairwise distances modeling
both visual similarity, 𝑟(118)=0.74, 𝑝 <0.001, and functional
similarity, 𝑟(118)=0.79, 𝑝 <0.001. These relationships are con-
firmed visually by the positive linear correlations of pairwise
embedding space distances. High Cronbach’s alpha values are
also observed, for distances in visual similarity, 𝛼= 0.82, and
functional similarity, 𝛼= 0.85. In general, these results demon-
strate that, considering all pairs, embedding spaces are consistent
in their representations of visual and functional similarity.

Range-normalized pairwise distances between stimuli la-
belled 1-16 are differently visualized in heatmaps in Fig. 5.
Larger distances between stimuli are darker and represent lower
similarity between parts. In the first column, distances derived
from computational models are represented (labelled CV, CF),
and from psychological models in the second column (PV, PF).
Heatmaps in the third column (DV, DF) represent differences
(computational - psychological) between these distances to di-
rectly compare which pairs of stimuli are represented by a larger
distance in one embedding space than the other. The first row of

(a) Visual similarity embedding space distances

(b) Functional similarity embedding space distances

FIGURE 4: RANGE-NORMALIZED PAIRWISE PSYCHOLOGICAL
AND COMPUTATIONAL EMBEDDING SPACE DISTANCES WITH AS-
SOCIATED SIMILARITY LEVELS SHOWN. DARKER POINTS INDI-
CATE OVERLAP OF PAIRS ASSIGNED TO SIMILARITY LEVELS

heatmaps represent distances in terms of visual features (CV, PV,
DV) while the second row represents functional features (CF, PF,
DF). As noted in Sec. 3.1.2, stimuli were selected based on com-
putational embedding space distances, which explains the visual
consistency in the blue heatmaps (CV, CF) showing increasing
distances between farther separated pairs (e.g., pair 5 and 15,
compared to pair 5 and 6).

To further investigate where there is more and less agreement
between models, the third column of heatmaps (DV, DF) in Fig.
5 is examined. Blue-colored squares indicate pairs separated
by a higher distance in the computational than psychological
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FIGURE 5: RANGE-NORMALIZED PAIRWISE DISTANCES BETWEEN STIMULI 1-16 IN COMPUTATIONAL (C) AND PSYCHOLOGICAL (P) EM-
BEDDING SPACES REPRESENTING VISUAL (V) AND FUNCTIONAL SIMILARITY (F). DIFFERENCES IN COMPUTATIONAL AND PSYCHOLOG-
ICAL DISTANCES SHOWN IN (D)

embedding spaces, and vice versa for red-colored squares. As an
example, the dark blue square in heatmap-DV shows that parts
3 (triangular chair back) and 11 (irregularly curved chair back)
in the visual similarity stimulus set (Fig. 1a) are more distant
in the computational embedding space. By contrast, the red
squares at the intersections of parts 10 (round-edged chair back)
and 11 or 11 and 13 (rounded chair seat) are evaluated as more
distant, and less similar, by humans than by the computational
model. Deeper insight into how humans made visual similarity
judgments is explored in Sec. 4.3.1.

Interestingly, comparing heatmap DF to DV, no pairs in terms
of function are considered more distant in the psychological than
computational embedding spaces. This suggests that, across all
pairs, pairs were considered more functionally similar by humans.
Parts 5-13 appear to be closely related by humans in functional
similarity, as reflected by the presence of many lightly colored,
high similarity, pairs in heatmap-PF. Inspecting Fig. 1b, these
parts correspond to chair seats, regardless of the type of chair
the seats belong to (e.g., 1, 2, 4-legged). In heatmap-CF, a
range of distances is observed between parts 5-13, which is a
consequence of how the stimuli were selected. The human criteria
used to assess functional similarity between these parts may be
less nuanced, and consider less information available in the shown
stimuli. Evaluation criteria used by humans to make functional
similarity judgments is detailed in Sec. 4.3.2.

4.2.2 Alignment across Similarity Levels. In addition to
the analysis of pairwise similarities, agreement between human
and computational evaluations of similarities is also examined at
a higher level. Rather than compare all pairwise similarities, the
agreement of pairs assigned to a range of levels of similarity is
considered by using measures of percent agreement. The process
of defining similarity levels is conceptualized in the example in
Fig. 6.

FIGURE 6: CONCEPTUAL OVERVIEW OF PROCESS USED TO AS-
SIGN SIMILARITY LEVELS TO PAIRS OF PARTS BY ORDERED
PAIRWISE DISTANCES

First, Euclidean distances between all 120 pairs of parts in
both the psychological and computational embedding spaces are
computed and ordered by decreasing distance. Lower distance be-
tween parts represents higher similarity, and vice versa. Accord-
ing to pairwise embedding-space distances, pairs are assigned a
similarity level between 1 and 5, where each level contains 24
pairs. Lower levels are assigned to high distance, and thus low
similarity, pairs (e.g., 5 and 15 in Fig. 6) and higher levels to low
distance, high similarity pairs (e.g., 5 and 9).

Evaluating computed distances in terms of low to high levels
of similarity (i.e., 1-5) may provide more generalizable insights
beyond specific distances computed in this work. In studies
investigating stimuli used for design-by-analogy, for example,
retrieval criteria for “near” or“far” analogies are often expressed
in terms of percentiles of similarity (e.g., in [2, 38]). Insights
pertaining to high and low levels of similarity, rather than specific
distances, may be relevant toward identifying “near” and “far”
stimuli in terms of non-text-based relationships, different from
more commonly explored text-based analogies.
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In Fig. 4, the relationship between pairwise distances and
assigned similarity levels are shown, where overlapping pairs as-
signed to the same psychological and computational similarity
levels are plotted darker. Percent agreement measures overlap
in the number of pairs assigned based on both embedding space
distances to the same similarity levels. Relatively low values for
percent agreement of 44% (53/120 pairs) and 43% (51/120 pairs)
are observed for similarity levels assigned in terms of visual and
functional similarity, respectively. This definition can be broad-
ened to also include adjacent levels such that a pair assigned to
level 2 based on distance in one embedding space is considered
to agree when assigned to level 1 or 3 based on distance in the
other. Accounting for adjacent levels is a popular modification
to percent agreement, e.g., for ratings assigned on a 1-7 scale
[37]). Adjusting for this modification, there is an 85% (102/120)
overlap of pairs assigned to the same visual similarity levels,
and 82% (98/120 pairs) overlap in functional similarity levels.
Alignment of pair assignment to similarity levels improves con-
siderably when adjacent levels are included, indicating that the
low percent agreement is not due to large discrepancies between
embedding space distances. Computationally derived measures
may therefore sufficiently represent human-evaluated similarities
at a coarser view, i.e., when identifying near vs. far or high
vs. low similarity between stimuli. However, misalignment is
apparent at a more granular level, such as across five levels of
similarity, which can be impactful if retrieval of stimuli at varying
distances from an input is desired.

In Fig. 7, the percent agreement of pairs assigned to similar-
ity levels in terms of psychological or computational embedding
space distances is shown across similarity levels and by crite-
ria represented (visual or functional). Adding insight to the
low percent agreement observed, there appears to be variation
across similarity levels. As indicated using Chi-square tests,
the difference in percent agreement across similarity levels is
observed to be statistically significant for both visual similarity
(𝜒2(4, 𝑁=120)=12.03, 𝑝=0.017) and functional similarity (𝜒2(4,
𝑁=120)=12.07, 𝑝=0.017). The largest contribution to this dif-
ference appears to be due to the high overlap of pairs identified
as sharing low similarity by both human and computational rep-
resentations. These results demonstrate there is improved align-
ment, particularly for pairs sharing low similarity, suggesting that
higher similarity between pairs may be driven by different factors
considered by humans and AI.

Overall, high agreement between human and AI-based rep-
resentations of visual and functional similarity was found, but not
across all analyses. Specifically, our findings demonstrate high
consistency in defining pairwise embedding space distances and
high alignment in assigning pairs to coarsely defined levels of low
to high similarity. These results support the notion that existing
AI-based models (e.g., those used in this work) represent human
perspectives of visual and functional similarities effectively over-
all. However, successful retrieval of inspirational stimuli may
rely on alignment of similarities across more granularly defined
levels not currently achieved. Observed differences and areas of
misalignment therefore encourage further examination of stim-
ulus features that may not currently be considered by computa-
tional methods. Qualitative post-task responses are analyzed in

FIGURE 7: PERCENT AGREEMENT OF PAIRS ACCORDING TO
HUMAN AND AI-BASED VISUAL AND FUNCTIONAL SIMILARITIES
ACROSS SIMILARITY LEVELS

the following subsection to identify features of stimuli underlying
human similarity judgments of non-text-based information.

4.3 Exploring Human Criteria for Similarity Assessments
Supporting the main findings of this work measuring the

agreement between human and computational representations of
non-text-based characteristics of stimuli, an examination of hu-
man evaluation criteria is additionally conducted through qualita-
tive analysis. This analysis can reveal areas where computational
methods may improve to further align with human evaluation
criteria, specifically when considering visual and functional sim-
ilarity. The evaluation criteria discussed are obtained through the
process described in Sec. 3.3.

4.3.1 Evaluation Criteria for Visual Similarity. Following
a qualitative inductive category formation procedure, eight crite-
ria for evaluating visual similarity were identified from 35 col-
lected responses (one response was missing in data collection).
Participants’ responses were assigned to an average of 2 codes
each. These criteria are listed in Table 1, where counts refer
to the number of participants whose responses were coded into
the relevant criteria. Multiple components of a response coded
into the same criteria were counted only once. Most frequently
referenced (by 34 participants) was the shape of the part, which
included references to specific shape geometries (e.g., rectangle,
triangle, circle, etc.), curvature or straightness, angularity (sharp-
ness or roundedness), etc. Size was also highly referenced, by
24 participants, which mostly considered thickness (or flatness),
dimensions (length, width, height, volume), and proportions be-
tween dimensions. More unique responses made reference to
non-visual features, including the part’s function, “how it inter-
acts with the body” (coded as ‘user interaction’), or “what part
of the chair it was on” (coded as ‘object’, referring to the part’s
placement within the whole object). These criteria were pro-
vided from both participants who completed either the visual or
functional similarity trials first.

As referenced in Sec. 4.2.1, parts 10 and 11 and 11 and 13 in
the visual similarity stimulus set (Fig. 1a) are farther in distances
according to human than AI-based representations. Differences
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TABLE 1: HUMAN EVALUATION CRITERIA OF VISUAL SIMILARITY

Criteria: Description Count

Shape: Geometry, curvature, edges, angles 34
Size: Thickness, dimensions, proportions, volume 24
Style: Distinctive features, aesthetics 3
Surface Area: Presence of gaps, holes 2
Orientation: Plane of part (vertical/horizontal) 2
Function: Function of part 2
User Interaction: How it interacts with body 1
Object: Placement of part within object 1

in curvature of edges, angularity of corners, and continuity of sur-
face area in these examples may contribute to greater perceived
dissimilarities by humans. When modeling visual features us-
ing deep-neural networks, since multiple random perspectives of
parts are considered, similarities in e.g., edge thickness, may be
emphasized. Though the same criteria may be used (e.g., curva-
ture or thickness) by humans and AI, when applied to multiple
perspectives compared to one isometric view, differences may be
observed. The role of these criteria and information seen and
emphasized by humans vs. AI in contributing to their represen-
tations of visual features of stimuli is discussed in Sec. 5.1.

4.3.2 Evaluation Criteria for Functional Similarity. To as-
sess functional similarity between parts, responses provided by
participants were coded into nine different criteria, shown in Ta-
ble 2. Compared to criteria used to evaluate visual similarity,
responses were more variable across 36 participants. The most
frequently appearing criteria, referenced by 18 participants, was
coded broadly as ‘interaction’ and included both what might in-
teract with the part and how. For example, body parts or objects
that might be supported by the part were considered as well
as the type of support provided (e.g., for vertical or horizontal
loads). Interestingly, some responses were explicitly human-
centered when assessing part function in terms of interactions,
including “I imagined how I would most often interact with the
part” or “I categorized based on how a person would use it”.
Other criteria were more objective regarding the identity of the
part (e.g., chair seat), the whole object (e.g., chair), or the primary
use and function of the part (e.g., “for human seating”), aligning
with the clustering of chair seats, chair backs, and tabletops in
Fig. 1b and of pairwise distances in heatmap-PF (Fig. 5).

Visual attributes were referenced including size and shape,
and were acknowledged by some participants as useful if others
were exhausted, with one participant stating that if other criteria
did not decide the selection “the choice was mostly arbitrary and
based on shape matching”. More participants who completed
functional similarity trials first referred to criteria based on vi-
sual features, suggesting that the ordering of tasks may have had
the opposite effect than expected. Participants completing vi-
sual similarity trials first may have known not to rely on these
features when assessing functional similarity. Parts may share
high functional similarity in the psychological embedding space
due to non-function-based features. As a result, when forming
categories, high-similarity parts (as determined by outcomes of
the triplet rating task) may then be categorized separately.

TABLE 2: HUMAN EVALUATION CRITERIA OF FUNCTIONAL SIMI-
LARITY

Criteria: Description Count

Interaction: How and what objects/body parts in-
teract with part under use

18

Function: Main use/purpose function of part 12
Position: Location of part within object 11
Shape: Geometry or curvature 8
Size: Thickness or flatness 8
Type: Comfortable/lounge or structural/rigid 6
Object: Identity of whole object 5
Material: Stiffness, softness, stress fields 5
Neighboring parts: Adjacent parts in object 3

Physical attributes were also considered, classified under
‘material’, including properties such as stiffness, stress fields,
and softness or hardness. One participant noted that these phys-
ical qualities “could influence how the user would feel using the
object”. A related sentiment was expressed by several responses
categorized broadly as ‘type’ in Table 2 to correspond to crite-
ria based on whether the part appeared comfortable, provided
cushioning, or in one example, “was more of a lounge type for
fitting surface or if it was more of an upright type sitting on
surface”. These types of surfaces were in contrast to those that
appeared rigid and were more structural. Abstract criteria such
as perceived comfort are impactful in the evaluation of the overall
function served by the object part, but may be difficult to capture
using AI, since corresponding visual attributes may not be obvi-
ous. Further considerations of representing abstract features of
inspirational stimuli are discussed in Sec. 5.1.

5. DISCUSSION
This work investigates how non-text-based attributes of in-

spirational stimuli are represented by humans and AI. Human rep-
resentations of visual and functional similarity modelled based
on triplet ratings of 3D-model parts collected in a human subjects
study were compared to AI-based representations derived using
deep learning. Computed similarities between stimuli were found
to be consistent across both representations, with greater agree-
ment found when assessing low similarities in appearance and
function. Qualitative data regarding how humans formed simi-
larity judgments was analyzed, furthering insight into human rep-
resentations of the examined non-text-based relationships. Based
on these findings, implications for representing inspirational stim-
uli in terms of non-textual information are discussed.

5.1 Implications for Representing Inspirational Stimuli by
Non-Text-Based Attributes
In this work, 3D-model parts are considered as a source of in-

spirational stimuli that contain multi-modal information, includ-
ing visual features and hierarchical relationships to other parts.
By exploring methods to computationally define non-text-based
relationships between these stimuli and then compare these rep-
resentations to human evaluations, insight can be gained into how
to support the retrieval and use of inspirational stimuli in a de-
sign context. Toward this aim, two implications are suggested for
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representing and defining similarity between inspirational stimuli
based on, specifically, visual and functional attributes of stimuli.

5.1.1 Framing of Similarity Assessments. The first impli-
cation of representing non-text-based information of inspirational
stimuli is the framing used when making similarity assessments.
Humans assessed visual features of stimuli by interacting with 2D
images of 3D-model parts taken from one isometric view. Instead,
neural networks were trained on multiple images taken at random
angles of each 3D-model part. Therefore, neural networks may
equally represent similarity between geometries and shapes from
less obvious perspectives (e.g., the side edge of a chair seat) to
the most common or meaningful views, from the human perspec-
tive. As noted in Table 1, the plane or orientation of the part
in the shown image influenced participants’ perception of visual
similarity. Instead, the equal weighting of all perspectives in
the neural networks may explain differences in pairwise compu-
tational and psychological embedding space distances between
stimuli. For example, parts 10 and 11 in Fig. 1a are considered
more similar by AI than parts 10 and 14, but the opposite rela-
tionships are true based on human representations (as shown in
heatmap-PV in Fig. 5). While humans may have emphasized
the rounded top edge in parts 10 and 14 as the most influential
criteria determining their similarity, the AI-determined relation-
ships also consider the straight edges seen from side views of
each part. This retrieval of stimuli based on less obvious features
of parts can lead to discovery of seemingly distant inspiration,
which may be helpful to designers, but may also be distracting if
too unexpected.

The issue of framing is also present in the representation of
functional relationships. As presented in Sec. 4.3.2, multiple
perspectives may be relevant to consider such as the interaction
and relationship of the part with other parts, objects, or humans.
Notably absent from the AI-based representation of functional
similarity is the human-centered framing and identification of in-
tended and afforded interactions with parts referenced by partic-
ipants in this study. Instead, functional relationships are derived
based on relationships to other parts within whole object assem-
blies. It is therefore suggested that data-driven methods should
account for the framing of representation of inspirational stimuli
that is most impactful or appropriate for the type of similarity
modeled.

5.1.2 Capturing Information at Varying Levels of
Abstraction. A second implication of representing non-
semantic attributes of inspirational stimuli is to capture
information at varying levels of abstraction. In the example of
3D-model parts, several more concrete features of stimuli were
represented by both humans and AI. These features included the
identity of the object the part belonged to and neighboring parts
within the same object assembly. While the neural networks used
did not explicitly input semantic labels of parts or objects, these
relationships were inferred through hierarchical information.
When representing function, this concrete information regarding
part and object identity was meaningful across both human and
computational representations. Not examined in the current work
is the role of product domain on human vs. AI representations,
reflecting a higher level of abstraction than individual object

parts. Exploring stimuli from diverse domains may impact the
present findings, particularly the observation that parts were
more functionally similar in AI than human representations.
Introducing a greater variety of stimuli may inform how humans
assess similarity between stimuli across domains differently
from AI, which in our present implementation is unaware of the
semantic groupings parts belong to.

As revealed through qualitative insights in Sec. 4.3.2, more
abstract information was also relevant. For example, participants
referenced a product’s style or its type in terms of level of comfort
or use for lounging. This criteria incidentally aligned with com-
putational embedding space distances since comfortable chairs
(e.g., parts 6-8 in Fig. 1b) share visual attributes, which the
function-based neural networks also incorporate. Prior work has
relatedly employed visual information through shape grammars
and 3D geometries of products to assess overall similarities in
product style [39, 40]. For humans, visual style was found to
be associated with a more conceptual meaning (i.e., appearance
of cushioned chairs with comfort), influencing representation of
functional relationships. Insights from this study encourage fur-
ther understanding of the relationship between visual attributes
and function and the use of AI to computationally define abstract,
conceptual features of stimuli toward improved alignment with
human representations.

5.2 Limitations and Future Work
This work presents a comparison of human and AI-based

representations of visual and functional similarity between 3D-
model parts. We acknowledge the potential limitation of the
present findings to the specific stimulus sets presented and sim-
ilarity types assessed by participants. In this work, a limited set
of stimuli was utilized in order to reduce the significant com-
plexity of this study and to make the task of assessing similarity
of non-textual information tractable for humans. Future work
might explore the generalizability of these findings to additional
examples and contexts. Several features of stimuli influencing
similarity assessments, e.g., the number of different objects pre-
sented or perception of comfort, may be specific to the types of
objects presented. As well, although the tasks conducted were not
explicitly design relevant, design experience of participants may
impact their judgments of relationships between the shown stim-
uli. Despite providing definitions for functional relationships at
the study’s onset, participants’ knowledge of other definitions of
function in engineering design may have impacted their similarity
assessments. Furthering this study, future work is encouraged to
investigate additional sources of inspirational stimuli containing
multi-modal information from which to extract and define non-
text-based similarities and study in a design context. By gaining
more knowledge regarding how these similarities are perceived
and evaluated, new sources of inspiration can be more effectively
engaged with and utilized by designers. Towards this aim, efforts
to define a more holistic definition of similarity are encouraged,
which appropriately account for varied features of stimuli (se-
mantic and non-semantic) and components of similarity. The
retrieval of and interaction with inspirational stimuli across vari-
ous forms can be enabled by computational platforms developed
by the broader design research community.
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6. CONCLUSION
The growing interest in representing inspirational stimuli

across multiple modalities, in contrast to by text-based labels
or descriptions only, motivates the present work. The aim of
this work was to understand how human and AI-based similarity
assessments of non-text-based features of inspirational stimuli
compare. Using measures of consistency and alignment, high
agreement between humans and AI was found for representing
both visual and functional similarities, at a coarse level. In both
cases, this agreement was highest for identifying pairs of stim-
uli sharing low similarity, suggesting that humans and AI agree
on identifying obvious differences, but less on features driving
increased similarity between pairs. The framing of how humans
and AI assess features of parts as well as the representation of
abstract information are proposed as factors that may need further
consideration in modeling visual and functional similarities using
computational methods. Findings from this study encourage fur-
ther research on representing multi-modal information of various
sources of inspirational stimuli to better understand and support
effective inspiration representation and retrieval for designers.
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