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Abstract

Figure 1: The generic capability of the ShipHullGAN model enables the creation of parametric design variations for
a wide range of ship hulls, including both traditional and unconventional forms.

In this work, we introduce ShipHullGAN, a generic parametric modeller built using deep convolutional generative
adversarial networks (GANs) for the versatile representation and generation of ship hulls. At a high level, the
new model intends to address the current conservatism in the parametric ship design paradigm, where parametric
modellers can only handle a particular ship type. We trained ShipHullGAN on a large dataset of 52,591 physically
validated designs from a wide range of existing ship types, including container ships, tankers, bulk carriers, tugboats,
and crew supply vessels. We developed a new shape extraction and representation strategy to convert all training
designs into a common geometric representation of the same resolution, as typically GANs can only accept vectors
of fixed dimension as input. A space-filling layer is placed right after the generator component to ensure that the
trained generator can cover all design classes. During training, designs are provided in the form of a shape-signature
tensor (SST) which harnesses the compact geometric representation using geometric moments that further enable the
inexpensive incorporation of physics-informed elements in ship design. We have shown through extensive comparative
studies and optimisation cases that ShipHullGAN can generate designs with augmented features resulting in versatile
design spaces that produce traditional and novel designs with geometrically valid and practically feasible shapes.

Video abstract: https://youtu.be/LT9Z52vBgzI
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1 Introduction1

Recently, machine learning, particularly in the form of scientific machine learning (SciML), has become increasingly2

prevalent in engineering design. This, on several occasions, has lightened the computational load from traditional3

solvers by building efficient low or high-fidelity surrogate models that predict performance almost instantly, thus4

accelerating the simulation-driven design (SDD) process. Although the efforts of integrating SciML in ship design5

are increasing, the pace is relatively slow compared to other engineering fields.6

Furthermore, there are few efforts to introduce these tools at the preliminary ship design stage, where naval7

architects and/or involved designers typically identify designs from existing databases while attempting to match new8

requirements. Afterwards, they may construct a parametric model using a suitable ship-hull surface representation,9

typically comprising NURBS surface patches or simpler panel meshes. This usually results in a narrow design space10

permitting only slight variations of a baseline design [1, 2]. Designers also get inspiration from existing designs while11

using their features and components to create a small set of potential alternatives. However, embedding these features12

is a complicated task and constructing a new parametric description for the unique shape using existing strategies is13

highly expertise-driven and time-intensive. While the current approach to ship design has proven effective for well-14

established ship types, there may be a need for more radical design ideas in certain situations. This could be when15

dealing with uncommon requirements that call for an exploration of a richer design space or when revolutionising16

and redesigning existing ship types, that is likely to arise as a result of major regulation changes, e.g., the IMO17

2020 - mandated reduction of emissions, or the emergence of new disrupting technologies in the context of Industry18

4.0, such as taking on board non-fossil fuels (ammonia, hydrogen), design and operation of autonomous vessels, etc.;19

[3]. Such a strategy will obviously benefit novel design tasks, e.g., special purpose vessels, but it can also offer a20

competitive advantage for traditional players in the industry.21

There have been substantial efforts in computer-aided ship design for building robust parametric tools, but they22

can only handle a specific hull type; some relevant examples of such tools are presented in [4, 5, 6, 7, 8]. Despite their23

efficiency in creating valid and smooth ship-hull geometries, they cannot be readily used to generate instances of ship24

types that deviate significantly from their target ship types. For example, in Fig. 2, the parametric construction25

proposed by [6], and later explicitly adapted for container ship hulls by [9], is depicted. Such parameterisation26

cannot be directly or easily mapped to an entirely different ship-hull type, such as the DTMB naval ship shown in27

the same figure. Although some generic approaches, like FFD (free-form deformation) [10], may be applicable to28

some extent, they either use a rather crude low-fidelity and featureless representation or require significant effort29

and experimentation for adaptation into new designs. For example, FFD-based parameterisations are not truly30

feature-driven [11], which deprives designers of the commonly needed feature-modelling capabilities and local control31

for designs such as bulbous bows or other features of local nature.32

How to map 
parameterisation?

DTMB Hull

KCS Hull

Figure 2: The parameterisation proposed by [6] for container ship hulls. Is it applicable to a naval ship design such
as the DTMB hull?

In this work, we aim to tackle the above-mentioned challenges in a typical parametric hull design by proposing33

a generic parametric modeller, ShipHullGAN. The new model can handle various ship hull types and transform34

one type into a completely different one, as illustrated in Fig. 3. Additionally, it has the ability to generate35

unique geometries by augmenting features from different ship types, such as the middle three geometries of Fig. 3.36

The proposed modeller is built using deep generative models, specifically deep convolutional generative adversarial37

networks (GANs) [12, 13], with a new architecture and loss function suitable for the problem at hand. These38

generative models were initially proven to be promising for generating entirely novel images from given datasets and39

recently have been exploited for engineering design problems, i.e., aerodynamic design and optimisation [14, 13]. If40

appropriately trained, they can efficiently learn latent representations, which can then be used as design parameters41

to construct diverse design spaces for shape optimisation. However, the capacity of these approaches has not been42
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explored in ship design.43

DTMB Hull

KCS Hull

Figure 3: Transformation of KCS hull into DTMB hull achieved using the ShipHullGAN parametric modeller.
Training on synthetic variations of both hulls makes it possible to generate unique designs featuring a blend of KCS
and DTMB attributes, exemplified in designs 5-7 along the sequence of arrows.

Despite their proven efficiency in design, these models have their limitations. Since they were initially developed44

for 2D datasets, e.g., processing of images, their application in 3D design requires suitable geometric representations to45

extract meaningful features [15]. An inappropriate training of such models can therefore result in many invalid shapes.46

More importantly, if the dataset is composed of various design sub-classes, they also tend to lose in generalisability47

[16].48

We, therefore, propose a modified architecture and a loss function to overcome the drawbacks inherited from49

GAN. To commence the training of ShipHullGAN, we first developed a technique to transform different types of50

ship hulls into a common geometric representation. Furthermore, we constructed a shape-signature tensor (SST)51

using appropriately encoded designs and their geometric moments (GMs) [17]. Therefore, the so-constructed SST52

augments and enriches the geometric information related to designs given to the ShipHullGAN model during training53

by infusing the moment-related physics associated with ship hulls. In this way, SST acts as a unique descriptor of54

each dataset design instance that enables the extraction of meaningful features which are not only geometry-driven55

but also physics-informed to provide rich and physically-valid design alternatives. We use a deep convolutional56

architecture [12] for the model to capture sparsity in the training dataset, along with a space-filling term [18] in the57

loss function to enhance diversity.58

To the best of the authors’ knowledge, this is the first attempt to construct a generic parametric modeller in the59

field of parametric computer-aided ship design. In accordance with the aim of this work, we report the following60

main contributions:61

1. Development of a large shape dataset containing 52,591 physically validated design variations of several existing62

classes of ships, some of which are widely used benchmarks in industry and academia. No such extensive dataset63

of ship hull forms is publicly available.64

2. Development of an intuitive approach to convert all ship designs into a common geometric representation. This65

technique also ensures a smooth NURBS-based reconstruction of designs resulting from the trained generator.66

3. The combination of the geometry with its relevant geometric moments results in SST, enabling the capturing67

of global and local geometric features with physics-informed elements in the latent space, which in turn allows68

the generation of designs that are both geometrically valid and physically plausible.69

4. Introduction of a space-filling term to the loss function, which enables the model to cover the entire spectrum70

of the training dataset, thereby enhancing diversity.71

5. Empirical data from optimisation and comparative studies demonstrating the generic capabilities of ShipHull-72

GAN and its advantage over typical GANs in terms of design diversity, quality, and validity.73

2 Background74

In this section, we provide a concise overview of the current state of parametric ship design, as well as a brief75

introduction to GANs and their existing applications in engineering design.76

2.1 Parametric ship design77

An early attempt for parametric modelling of ship forms was made by Lackenby [19], wherein hull variations were78

achieved by adjusting the prismatic coefficient, centre of buoyancy, and the dimensions and location of the nearly79

cylindrical mid-body of a base hull. This method has since evolved by taking on-board tools and representation80

offered by CAGD (Computer-Aided Geometric Design) to establish the field of Computer-Aided Parametric Ship81
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Design (CAPSD), whose expansion, modernisation and embedding in the area of free-form shape optimisation is82

arguably due to Horst Nowacki [1] his students and collaborators; see, e.g., [20, 21, 22]83

In the pertinent literature, various techniques have been employed for the parametrisation of free-form shapes,84

including direct mesh-, basis vector-, domain element-, conformal mapping, partial differential equation-, FFD-,85

polynomial and spline-based approaches. A detailed description of these approaches can be found in [23]. However,86

within the realm of CAPSD, FFD- and spline-based techniques are commonly utilised to parameterise various types87

of hull geometries.88

These methods have been developed to address numerous tasks and overcome specific challenges, such as ensuring89

hull fairness [24, 25], enhancing design variation [26], achieving accurate geometric representation [27, 4], enabling90

plausible hull modifications [28, 8], and establishing better associations with solvers [29, 6]. Despite the diversity91

of these approaches, the majority of the research has primarily focused on creating parametrisation techniques for92

specific hull categories and still suffer to overcome problems related to:93

• Geometric complexity: Ship hulls are characterised by their intricate curvature and non-uniform surfaces,94

which can make it difficult to develop a comprehensive parameterisation that accurately captures the nuances95

of the geometry.96

• High dimensionality: A ship hull’s parameter space can be vast, with numerous parameters governing its form97

and function. Navigating this high-dimensional space can be computationally demanding, requiring advanced98

optimisation algorithms and techniques to efficiently explore and evaluate design alternatives.99

• Interdependencies: The various parameters that define a ship hull’s shape and characteristics are often inter-100

connected, with changes in one parameter potentially affecting multiple aspects of the design.101

• Constraints: Ship hull designs must adhere to numerous constraints, including physical limitations, regulatory102

requirements, and industry standards.103

• Scalability: As marine vessels continue to grow in size and complexity, parameterisation techniques must adapt104

to accommodate these expanding scales.105

Emergence of new geometric approaches and computational intelligence have aided in overcoming a few of the106

above-mentioned challenges. For example, geometric complexities have been addressed with new surface represen-107

tations, such as T-splines, which compared to NURBS provide accurate representation and controllability of local108

and global features [9]. Issues of high-dimensionality are managed by advanced physics- and geometry-informed109

approaches [30]. Understanding and managing parameter interdependencies is crucial to achieving a successful and110

coherent design, which is accomplished using procedural approaches that take into account design constraints [5, 28].111

However, the aspect of scalability remains a significant challenge, which has not been explored extensively within112

the community. Most of the approaches described above are developed around a baseline from which variations113

are derived, making it crucial to adapt these methods to accommodate the increasing complexity and demand for114

innovative and specialised vessels.115

In the present work, we aim to develop a generic parametric modeller using GANs (Generative Adversarial116

Networks) to overcome these limitations. By leveraging the power of GANs, we hope to create a scalable and117

adaptive solution that can effectively handle the challenges posed by various ship hull designs and cater to the118

ever-evolving requirements of modern marine vessels.119

2.2 Generative adversarial networks120

This section briefly introduces typical GANs, i.e., Vanilla GAN, and their applications in engineering design and121

optimisation. A typical GAN model consists of two neural networks, generator G and discriminator D, which are122

trained simultaneously to enhance the capability of G to map from a latent space to the data distribution of interest123

and thus aim to generate new designs which could have been part of the real designs dataset. In contrast, D tries to124

classify designs, i.e., to distinguish between real (designs in the training dataset) and generated designs, also referred125

to as fake designs. Networks G and D are trained simultaneously to reach a Nash equilibrium with the following126

minimax loss function:127

min
G

max
D

Ladv(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 −D(G(z)))] (1)

where x represents designs in the training dataset and z denotes the latent tensors randomly sampled from a given128

distribution pz. The training of the GAN is typically seen as a game or competition between G and D, thus referred129

to as adversarial training, which facilitates learning the data distribution pdata(x) of real designs x. During training,130

the performance of D is maximised so that it can accurately distinguish x from the synthetic designs, G(z), sampled131

from pz. During this training, G minimises log(1−D(G(z))) to learn to produce designs that the discriminator will132

classify as real designs, i.e., designs resulting from the generator will tend to be similar to real designs.133

The adversarial training commences with mini-batches of samples from pz, and G tries to produce realistic designs134

based on these samples. Then, D is trained to identify whether the presented designs are real (i.e., from the training135
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dataset) or fake (i.e., from the generator). During this process, both networks adjust/optimise their parameters to136

outperform their opponent, i.e., as D improves its classification ability, G also enhances its ability to create data that137

fools D. This process continues until convergence is achieved. This way, G of the trained GAN model can generate138

new designs with sufficient diversity within the prior distribution.139

Both G and D can be nonlinear mapping functions, such as a conventional neural network (NN) or a convolutional140

NN (CNN). In our case, we use CNN, which has been proven more effective in capturing sparse features. D and G141

with CNN-like architecture are often referred to as Deep Convolutional GAN (DCGAN) [12, 13].142

2.2.1 GANs in engineering design143

GANs and their variations have been used for various tasks; however, in this work, we focus on their application144

in engineering design. Recent applications of GANs in the context of engineering design have appeared in topology145

optimisation [31, 32], design and optimisation of aerofoils and wings [14], design of metamaterials [33] and synthesis146

of design creativity in bicycle design [34], among many others.147

Chen et al. [14] proposed a Bézier-GAN model for airfoil design and optimisation. To achieve a high representation148

capacity (i.e., design variation) and compactness (i.e., design validity), Bézier-GAN uses a Bézier curve layer right149

after the generator, which fits a Bézier curve to data sampled from the employed distribution. Later, Chen et150

al. in [35] proposed a Bézier-GAN variation based on conditional GANs, called CBGAN, to mainly tackle the151

inversion ambiguity in the inverse design of aerofoils. A performance-conditioned diverse GAN (PcDGAN) was152

proposed by Nobari et al. [36], which uses a new self-reinforcing score (Lambert Log Exponential Transition Score)153

for improved conditioning. Chen and Ahmed proposed a performance-augmented diverse generative adversarial154

network (PaDGAN) [16] and its multiobjective extension MO-PaDGAn [37] to ensure that the trained generator155

remains applicable, with good-performing designs, outside the training dataset domain. To achieve this objective,156

PaDGAN uses a new loss function based on determinantal point processes (DPPs), which tries to maximise the157

spread of designs based on their geometric similarity and performance. However, PaDGAN requires the evaluation158

of performance and its gradients, which is commonly computationally expensive to evaluate. This problem is tackled159

in the present work using geometric moments (GMs) as a physics-informed performance descriptor instead of directly160

employing performance evaluations.161

To detect geometric abnormality of generated aerofoils or wings, Li et al., [13] trained a DCGAN with a dis-162

criminative model based on convolutional neural networks, which detects invalid designs without the need for a163

separate and expensive computational evaluation. Chen and Fuge [38] proposed a hierarchical GAN model to allow164

the synthesis of designs with interpart dependencies. Nobari et al. [39] trained a conditional GAN model to enforce165

the generator to create designs within a specific performance range and tested their network in the generation of166

3D shapes corresponding to aeroplanes. A CreativeGAN model was proposed by Nobari et al. [34] to ensure the167

generation of novel design alternatives. To enhance novelty, CreativeGAN used the K-nearest neighbour (KNN)168

approach to detect novel features of designs and use these features to train the StyleGAN model [40], which is169

capable of generating designs with the detected novel features. Lastly, Dong et al. [41] demonstrated a non-design170

application of GANs by developing ShipGAN, a model that generates realistic operational scenarios for ships.171

3 ShipHullGAN172

In this section, we provide an in-depth presentation of the ShipHullGAN model considerations and its architecture,173

schematically depicted in Fig. 4. The generator and discriminator of the proposed model have a deep convolutional174

architecture to better capture the sparsity in the data. ShipHullGAN uses space-filling [18] to evenly capture the175

diversity present within the training dataset and SST to inject the notion of physics in the latent features during176

training.177

Let G be a geometric object representing a baseline design (e.g., a parent hull) in an ambient space A ⊆ R3. We
also assume that P (G) is a vector function in a finite space that provides the GAN suitable geometric representation
of G, x = P (G), in A. Along with x, there is a lumped geometric moment vector, M(G) ∈ RnM . Now combining
the geometry and its moments results in a unique SST,

SST = (P (G),M(G)) , (2)

encompassing high-level information about the design. If the shape dataset contains {x1,x2,x3, . . . ,xn} designs,178

then computing the GMs of each design results in a training dataset with n SSTs, denoted as X = {SST1,SST2,179

SST3, . . . ,SSTn}, for training the ShipHullGAN model.180

3.1 Shape dataset181

SciML for engineering design problems suffers mostly from inappropriate and/or insufficient amounts of data. This182

is especially challenging if labels, typically performance parameters, are evaluated by time-consuming high-fidelity183

solvers. However, generative models are generally unsupervised and do not require labels; nevertheless, a sufficiently184

diverse dataset with novel design alternatives is necessary to acquire a trained model with good generalisability. In185
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Figure 4: The ShipHullGAN architecture incorporates shapes and their geometric moments in the form of SST to
improve design validity and incorporate physics into the latent variables. It also includes a space-filling layer that
aims to create a uniform distribution of designs from the generator. Once trained, the generator can then be linked
with the performance evaluation code and optimiser to perform shape optimisation for optimised design alternatives
satisfying given design constraints.

the context of engineering design, application of such models has so far appeared in automotive [42] and aerofoil186

[14] design, since relevant datasets such as shapeNet2 and UIUC airfoil coordinates database3, containing several187

thousand designs, are publicly available. To the best of the authors’ knowledge, no equivalent, diverse and publicly188

available dataset of ship-hull designs exists. This is probably why so far in ship design research, SciML models are189

implemented on a specific design type whose variations are created synthetically using a baseline parameterisation.190

However, in such cases, new hulls are generally slight variations of the parent hull (baseline design). Therefore,191

if GANs were trained on a specific ship-hull type using a similar baseline variation process, one could not expect192

significant novelties in generated designs. To overcome this hurdle and construct a sufficiently diverse and large193

dataset of existing ship-hull geometries, we extensively studied the pertinent literature on systematic hull form194

series, optimisation, and machine learning to extract all relevant hull types. This exercise resulted in consideration195

of systematic series, e.g. FORMDATA, and a variety of parent hull families from different ship types, e.g., KCS4,196

KVLCC25, VLCC, JBC6, DTC, and DTMB7), shown in Fig. 5, which are widely used in industry and academia.197

Among the hulls in Fig. 5, the FORMDATA series [43] is based on a systematic analysis of geometric data of a198

high number of existing ships in the 1960’s and of earlier systematic series, covers conventional, mainly wall-sided199

hull forms, and has been widely used for designing merchant ships. Hull variations from the FORMDATA series can200

2https://shapenet.org
3https://m-selig.ae.illinois.edu/ads/coord_database.html
4http://www.simman2008.dk/KCS/kcs_geometry.htm
5http://www.simman2008.dk/kvlcc/kvlcc2/kvlcc2_geometry.html
6https://www.t2015.nmri.go.jp/jbc.html
7http://www.simman2008.dk/5415/combatant.html

6

https://shapenet.org
https://m-selig.ae.illinois.edu/ads/coord_database.html
http://www.simman2008.dk/KCS/kcs_geometry.htm
http://www.simman2008.dk/kvlcc/kvlcc2/kvlcc2_geometry.html
https://www.t2015.nmri.go.jp/jbc.html
http://www.simman2008.dk/5415/combatant.html


Figure 5: Main ship hull types used in training of ShipHullGAN model.

supply us with approximately 5000 different hull forms, but of only three basic ship hull types, referred to as U, N201

and V, which are generated by combining different groups of ship sections for the aft and fore parts. The shapes202

of these ship lines are varied systematically using three form coefficients, i.e., midship section coefficient CM , along203

with the fore CBF
, and aft CBA

block coefficients. Therefore, the FORMDATA-generated dataset requires additional204

designs to meet the diversity requirements discussed before. If we merely add the previously identified additional205

parent hull geometries, we expect no or minimal impact as they will constitute a negligible percentage of the dataset.206

To overcome this issue, we created synthetic variations of the remaining hulls in Fig. 5 based on the parametric207

approach discussed in [11]. These designs’ length, beam and width are kept constant, and non-dimensional shape208

parameters, varying between 0 and 1 (0 to 100%), are used to create valid ship-hull shape variations. Indicative209

instances of the variations accomplished by this approach are shown in Fig. 6. It can be easily seen that all depicted210

hull instances have plausible geometries with non-negligible variation when compared to the parent hull design.211

Aggregating the full set of parent-hull design variations with the FORMDATA-generated designs result in 52,591212

designs which are then used to train the ShipHullGAN model. Finally, the distribution training designs’ physical213

(i.e., wave resistance (Cw)) and geometric (i.e., volume (▽)) criteria are shown in Fig. 7. The distribution of physical214

(i.e. wave resistance Cw) and geometric (i.e. volume ▽) criteria of the training designs are illustrated in Fig. 7. The215

distribution of ▽ indicates that our dataset has adequate diversity, with most designs having minimal Cw. However,216

these distributions do not play any direct role in the output of ShipHullGAN, as training is performed with only217

design geometries.218

Figure 6: Indicative instances from the synthetic design variation of Bulker, DTMB, Global-S, KCS, KVLCC2, and
Megayacht hulls in Fig. 5 created for training ShipHullGAN.
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Figure 7: Distribution of (a) wave resistance coefficient (Cw) and (b) ship-hull volume (▽) in the training dataset.

3.2 Shape encoding for GANs219

Typically, deep learning models require datasets with vector inputs of fixed dimensions to extract meaningful features.220

This is relatively easy to achieve for natural language processing and vision/image processing, where these models221

originated. However, selecting suitable data encoding is a significant challenge when considering applications of deep222

learning models in 3D free-form shape processing. Free-form shapes, even when belonging to the same family, can223

have significantly different topology, structure, geometric parameterisation, and resolution; see Fig. 8 as an example224

of three ship hulls with significantly different geometrical representations and surface dimensionality. Therefore,225

we need to ensure that all shapes in the training dataset share the same underlying topology, representation, and226

resolution. This implies that all designs need to be converted into a common representation with a similar resolution227

at a prepossessing stage.

S-175 HullKCS  HullDTMB Hull

Figure 8: Example of three ship hulls with different structures of the surface parameterisation: the DTMB hull
is constructed with a single NURBS surface, whereas the KCS and S-175 are composed of several NURBS surface
patches with a significantly different number of control points.

228

Signed distance function (SDF), voxels, point clouds and meshes are commonly used with satisfactory results229

for shape visualisation tasks in computer graphics and machine learning-based regression models for performance230

prediction [15]. In generative models, however, where the output is also a 3D shape, these approaches often result in231

the loss of local geometric features of the input shapes. More importantly, the resulting designs of such approaches232

commonly lack surface smoothness, which is crucial for several engineering analyses. In the case of ship hulls, both233

local features and surface smoothness are essential in appropriately evaluating the hydrodynamic performance of a234

ship hull. Although one can achieve a certain level of smoothness by increasing the employed resolution, this also235

increases the network complexity and memory requirements. A detailed discussion of such approaches with their236

advantages and disadvantages can be found in [15].237

NURBS-based surface representations are quite common among ship hull designers as they provide the most238

accurate and versatile mathematical description of design geometry and are thus favoured in the pertinent industry239

and the vast majority of CAD tools available. As mentioned before, DCGAN models require fixed dimensional240

vectors as input, and therefore a common description is needed. However, especially when the dataset comprises241

different design classes, converting all of them into a common NURBS representation is not a trivial task, especially242

for 3D shapes.243

In summary, any approach used for the construction of a 3D dataset for SciML training should:244

1. Represent all shapes with the same resolution;245

2. Capture both local and global geometric features of the shape;246

3. Maintain geometric similarity between the original and reconstructed shapes;247

4. Satisfy the above conditions with a relatively low resolution (e.g., with few mesh elements) to avoid redundancies248

and reduce the model’s overall complexity.249

In traditional and even modern ship design, the Body Plan (BP), consisting of the so-called cross sections (CSs)250

resulting from the intersection of the ship hull with an appropriate sequence of transverse planes along the length of251
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the ship, is a handy representation of ship’s geometry in 2.5D format. If appropriately constructed, it can be used,252

along with the basic reference lines, to develop the remaining ship lines plans, i.e., the profile plan, the waterlines253

(intersection of ship hull with horizontal planes) and the buttocks (intersection with planes parallel to the symmetry254

plane) of the ship. Therefore, a BP-inspired approach can encode the geometric information in a uniform and255

consistent manner in a ship hull. Our approach is based on the intuitive arrangement of transverse planes used for256

producing the BP so that all critical features of the hull surface are captured. More importantly, once a new design257

is generated from the GAN model, we can reconstruct a smooth and fair hull surface with sufficient accuracy and258

relative ease. The basic steps of our implementation are summarised below and illustrated in Fig. 9 for the KCS hull259

case.260

1. Assume that the ship hull is placed within the smallest axis-aligned bounding box as shown in Fig. 9(b) with261

L̄, B̄, and D̄ denoting its longitudinal, transverse and vertical dimensions, respectively.262

2. Using the bounding-box length L̄, convert the hull geometry into a non-dimensional representation contained263

in a bounding box with dimensions 1, B̄
L̄
, and D̄

L̄
.264

3. Divide the hull into four parts using a non-uniform partition, [0, 0.1, 0.3, 0.8, 1], which corresponds to the typical265

regions of different geometric variation for ship hulls in the longitudinal direction; see Fig. 9(c). The intervals266

P1 = [0, 0.1], P2 = [0.1, 0.3], P3 = [0.3, 0.8], and P4 = [0.8, 1] correspond to the bow, fore transition, wall-sided267

(midship), and stern parts, respectively.268

4. Assuming that E = 4Ē is the overall number of ship CSs used to describe each ship hull in the dataset,269

where Ē ∈ Z>1. We divide each region, P1, P2 P3 and P4 into E
4 equally spaced CSs. This arrangement270

generates a dense line description in areas with abrupt geometrical changes (P1, P2, and P4) and a rather271

sparse representation for the region (P3)with an almost constant CS; see Fig. 9(d).272

(a) Parent hull

(b) Bounding box (c) Segmentation into 𝑃!, 𝑃", 𝑃# and 𝑃$ sections 
(d) Creating CSs in 𝑃", 𝑃# and 𝑃$

(e) Creation and division of 𝐷%! (f) Orientation of CSs in 𝑃! (g) Creating CSs in 𝑃!

(h) CSs in 𝑃!, 𝑃", 𝑃# and 𝑃$ (i) Dividing CSs into 𝑁 points (j) Final grid points

𝑃!
𝑃"

𝑃#

𝑃$

𝑝"#$ 𝑝"#$

Figure 9: Steps of the proposed body-plan-based approach for extracting geometric information from ship-hull
shapes.

The CSs used in our encoding for P2, P3, and P4 correspond to intersections of the ship hull surface with transverse273

planes, i.e., planes perpendicular to the longitudinal direction, which is the standard practice in ship design. However,274

CSs in P1 are generated by a family of planes rotating gradually through a vertical axis lying on the intersection275

of the longitudinal symmetry plane and the transverse plane at L̄ = 0.1, as shown in Figs. 9(h-j). This approach is276

adopted in order to avoid multiply (usually doubly) connected CSs resulting from intersections of the bulbous bow277

area with transverse planes. In more detail, the following steps describe the construction of CSs in P1:278

1. Create the deck curve DP1
of the hull part in P1 and divide it into E

4 equally-spaced points using the arc length279

method; see Fig. 9(e)).280

2. Find intersection point, pint, of lines starting from the first and last points of DP1
, respectively, along the281

longitudinal plane of symmetry and the transverse plane at L̄ = 0.1; see Fig. 9(e).282

9



3. Using the line segments defined by pint and each of the identified points on DP1 , generate E
4 planes intersecting283

the ship hull; see Fig. 9(f).284

4. Create CSs in P1 by computing the intersections of the previously constructed planes and the ship hull; see285

Fig. 9(g).286

Once CSs in all the regions are created, we divide each CS into N equally-spaced points using the arc length method,287

see Figs. 9(i, j), which results in overall N × E grid points for each design in the training dataset.288

The grid points of a design resulting from the trained generator are used to reconstruct the surface by fitting a289

curve on the points for each CS, followed by interpolating the surface on the curves, as depicted in Fig. 10. This290

surface reconstruction process from grid points is further discussed in detail in §4.1.291

Figure 10: Reconstruction of designs in Fig. 8 using the proposed shape encoding approach. It is evident that all
three designs now possess a consistent underlying geometric representation.

3.3 Preparing geometric data for training292

As previously mentioned, there are n = 52, 591 designs in our shape dataset. Before training, all designs in this293

dataset are deconstructed using the previously described body-plane-based approach. For this deconstruction, we294

use E = 56 CSs, and each CS is divided into N = 25 points. Hence, the ith design will be represented with295

xi, corresponding to 25 × 56 grid points. We have experimented with different grid resolutions, but, as indicated296

in Fig. 11, the employed, relatively low, resolution of 25 × 56 grid points provide sufficient surface reconstruction297

accuracy while preserving both local and global geometric features.298

Original

Original

Original

Figure 11: Comparison between the original KCS hull and its surface reconstruction from the grid points of the
proposed body-plan-based approach. (a) Surface representations of the original and reconstructed hulls, (b) their
geometric representation, comparisons in terms of (c) the one-sided Hausdorff distance [44], and (d) Gaussian cur-
vature.

Finally, the x (longitudinal), y (transverse) and z (vertical) coordinates of the generated grid points are used to299

construct three [25 × 56] matrices as shown in Fig. 12. Hence, the geometric representation/encoding of the shape300

dataset is materialised with n = 52, 591 3-tuples of [25 × 56] matrices. The proposed shape encoding approach301

provides a robust representation of training designs, enabling our model to efficiently learn complex relationships302

between the input distribution and the generated designs.303

3.4 Enhancing model robustness304

The augmentation of the geometric information in the SST with geometric moments (GMs) significantly increases the305

model robustness since it enriches the design encoding and subsequently results in fewer invalid and similar shapes.306

More importantly, due to the existence of a strong correlation between physical quantities of interest (QoI), such as307

Cw and GMs, the inclusion of the latter in SST constitutes an indirect introduction of physics-related information308

in the extracted latent features; further details on this procedure will be presented later in the section.309
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Figure 12: Illustration of transformation of grid points into training set’s 3-tuples of input matrices.

3.4.1 Geometric moments - GMs310

Assuming an object G, the s = p + q + r order GMs of its shape can be calculated as311

Mp,q,r(G) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xp yq zr ρ(x, y, z) dxdydz, with p, q, r ∈ {0, 1, 2, . . . }, (3)

where ρ(x, y, z) =

{
1 if (x, y, z) ∈ G
0 if (x, y, z) /∈ G . Given a non-negative integer s, the vector Ms will contain nM = (s +312

1)(s + 2)/2 moment elements. Ideally, the selection of s should result in a set of GMs capturing global as well as313

local features of G. For instance, GMs of order 2 are314

M2 =
{
M2,0,0(G) M0,2,0(G) M0,0,2(G) M1,1,0(G) M1,0,1(G) M0,1,1(G)

}
. (4)

In Eq. (3), if ρ(x, y, z) corresponds to volume or mass density, then the zero- and first-order moments, M0,0,0(G),315

M1,0,0(G), M0,1,0(G), and M0,0,1(G), correspond to commonly used moments in computer graphics, CAD and316

engineering for computing the object volume or mass, V = M0,0,0(G), and the coordinates of the volume or mass317

centroid. If ρ(x, y, z) is the probability density function of a continuous random variable, then M0, M1, M2, M3
318

and M4, represent the total density, mean, variance, skewness and kurtosis of the random variable, respectively.319

Moreover, the 2nd order GMs can be organised in a second-rank tensor, the moment of inertia tensor. As one might320

expect, the more GMs we use, the better we capture the shape’s intrinsic features. Therefore, one may opt for321

the inclusion of up to s order moments, i.e.,
{
M0,M1,M2, . . . ,M s

}
, with s being appropriately large to cover322

the shapes of interest [45]. Theoretically, s ranges from 0 to ∞, though there exist object classes for which s is323

finite when, e.g., dealing with the class of the so-called quadrature domains in the complex plane [46] or when324

approximating convex bodies using Legendre moments [47].325

There exists a variety of methods available in the literature for computing GMs, which use either lower-order326

approximating meshes[48] or high-order surface representations [49] of G, such as B-splines and NURBS. The most327

commonly used method employs Gauss’s divergence theorem, also used in this work. The divergence theorem328

evaluates GMs by converting volume integrals to integrals over the surface bounding the volume; for further details,329

the interested reader may refer to [50].330

3.4.2 Geometric moment invariants - GMIs331

The GMs discussed so far are not invariant to affine transformations, such as translations, rotations and scaling [17].332

However, most physical quantities are invariant to all or some of these transformations, and we need to match this333

invariance when using moments to establish the relationship with the corresponding physical quantity. For instance,334

evaluating Cw for the ship is invariant to translation and scaling if assessed at a certain Froude number. Therefore,335

we need to ensure the translation/scaling invariance of the moments we will employ in the construction of the SST.336

This is accomplished with appropriate geometric moment invariants that are briefly discussed subsequently; a more337

general discussion of GMIs can be found in [17].338

If we ensure that the computation presented in Eq. (3) is performed with respect to an origin placed at G’s339

centroid, c(G) = (Cx, Cy, Cz), we then get the so-called central GM of sth order, which is invariant to translation340

and is equivalently computed as:341
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µp,q,r(G) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x− Cx)p (y − Cy)q (z − Cz)r ρ(x, y, z) dxdydz. (5)

It is worth noting that as this computation is performed with respect to the object’s centroid, the first-order moment342

is zero, i.e.,
{
µ1,0,0, µ0,1,0, µ0,0,1

}
= 0. To further achieve invariance of µp,q,r to scaling, we assume that G is uniformly343

scaled by a factor λ, which yields344

µ̂p,q,r(Ĝ) = λp+q+r+3µp,q,r(G). (6)

Then, one can easily conclude that

MIp,q,r =
µp,q,r

(µ0,0,0)
1+(p+q+r)/3

(7)

is an invariant moment form of G under uniform scaling and translation [17]. For any non-negative integer, s, the345

GMI vector, MIs, contains all the geometric moments invariant to translation and scaling such that p + q + r = s.346

By definition this invariance satisfies the following equalities: MI0,0,0 = 1 and MI1 = {MI1,0,0,MI0,1,0,MI0,0,1,347

MI1,1,0,MI1,0,1,MI0,1,1} = 0.348

3.4.3 Relationship of geometric moments to physics349

Our motivation to investigate the utility of GMs for SST stems from the extensive use of the Sectional Area Curve -350

SAC and its moments in Computer-Aided Ship Design for hydrostatic and hydrodynamic analyses. SAC is a function351

S(x) of 2D zeroth-order GMs describing the longitudinal variation of the area of ship sections below the waterline.352

As stated in [51], “A SAC provides a practical and straightforward description of global geometric properties. At353

the same time, it is closely related to a ship’s resistance and propulsion performance. From this point of view, the354

ship hull form distortion approach based on SAC transformation is one of the most influential global design methods355

for the preliminary design stage.” In an analogous spirit, [26] stresses that “geometric properties of SAC have a356

decisive effect on the global hydrodynamic properties of ships”. Historically, the importance of SAC in ship design was357

established back in the 1950s with the introduction of the Lackenby transformation [19] for modifying the ship hull358

via the SAC, which has been further enriched in the context of modern CAD representations and used in ship-design359

optimisation; see, e.g., [29, 52].360

Furthermore, linear wave-resistance analysis performed by eminent hydrodynamicists, such as E.O. Tuck [53, 54],361

J.V. Wehausen [55] and others, has revealed the importance of the longitudinal rate of change of the cross-sectional362

area, i.e., S′(x), which determines the strength of the Kelvin-source distribution used to model the disturbance363

caused by the body as it moves on the sea’s free-surface. It is worth noticing that the flow around a slender ship364

cruising on the free surface with a constant velocity can be modelled by an appropriate source-sink distribution365

along its centre plane. The strength of these sources is proportional to the longitudinal rate of change of the ship’s366

cross-sectional area [53, 55], and this aspect can be well captured by GMs, especially those of higher order. In fact,367

an early derivation for the evaluation of Cw for slender ships, known as Vosser’s integral, reveals explicit dependence368

on the longitudinal derivative of the cross-sectional area [55], i.e., S′(x) = d
dxS(x) where S(x) =

∫
Ω(x)

dydz is the369

cross-sectional area, and Ω(x) denotes the cross-section of a ship hull at the longitudinal position x.370

Let now mp =
∫ L

o
xpS′(x)dx be the p−th order moment of S′(x) with x = 0 and x = L corresponding to the stern

and bow tips of the hull, respectively. Assuming that S(0) = S(L) = 0 we get:

mp = −p

∫ L

0

xp−1S(x)dx = −p

∫ L

0

∫
Ω(x)

xp−1dxdydz, (8)

which leads to
mp = −pMp−1,0,0, (9)

where Mp−1,0,0 is a component of the hull’s GMs vector of order s = p + q + r = p− 1; see Eq. (3). Thus, p−order371

1D moments of S′(x) are directly linked to (p− 1)−order 3D longitudinal GMs of the hull. These physics-informed372

moments are included in the set of GMs used for building the SST we use for training ShipHullGAN.373

Obviously, one cannot expect that every physical QoI of integral character is strongly connected with the GMs of374

the ship shape. Therefore, the usage of GMs can only cover some physics-informed features. For example, viscous-375

pressure resistance is expressed as an integral over the wetted surface of the body; nevertheless, it depends on local376

properties of the surface, such as smoothness and curvature, which can act as turbulence generators by triggering flow377

separation. However, even if there is no strong connection between GMs and physics quantities under consideration,378

the usage of the former can still provide high-level intrinsic geometric information of the shape’s geometry, which is379

imperative for extracting efficient features with enhanced diversity and geometric validity.380
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3.4.4 Augmenting the final dataset with GMIs381

The employed SST for the training dataset instances incorporates GMIs of up to s = 4th order with nM = 35382

components. As an example, the GMIs for DTC, Series-60 and S-175 hulls depicted in Fig. 3 are reported in383

Table 1. Higher-order GMIs can be utilised, but as the order increases, the GMIs become more susceptible to noise,384

necessitating more careful handling. This also increases the potential for numerical inaccuracies and computational385

issues. Luckily, as demonstrated in [56, 30], 4th order GMIs are sufficient for capturing geometric features and the386

associated physics (Cw) in ship design.387

Table 1: Geometric moment invariants up to 4th−order evaluated for the DTC, Series-60 and S-175 hulls in Fig. 5.

MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0 MI0,2,0 MI0,0,2 MI1,1,0 MI1,0,1

DTC 1.00 0.00 0.00 0.00 1.39 3.25E-02 1.24E-02 0.00 -1.62E-02
S-175 1.00 0.00 0.00 0.00 1.45 3.86E-02 1.01E-02 0.00 -9.37E-03
Series-60 1.00 0.00 0.00 0.00 1.26 3.12E-02 1.36E-02 0.00 -9.62E-03

MI0,1,1 MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2 MI1,1,1 MI1,2,0 MI2,0,1

DTC 0.00 -2.75E-04 0.00 4.05E-04 0.00 5.65E-04 0.00 -2.72E-03 3.13E-02
S-175 0.00 -1.64E-04 0.00 4.91E-04 0.00 1.90E-05 0.00 -3.38E-03 1.86E-02
Series-60 0.00 -1.73E-04 0.00 2.40E-04 0.00 1.01E-05 0.00 -3.11E-04 1.99E-02

MI2,1,0 MI3,0,0 MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0 MI1,0,3 MI1,1,2

DTC 0.00 -9.01E-02 2.90E-04 0.00 3.71E-04 0.00 2.07E-03 -3.27E-04 0.00
S-175 0.00 1.51E-01 1.88E-04 0.00 3.61E-04 0.00 3.27E-03 -1.69E-04 0.00
Series-60 0.00 -3.56E-02 3.36E-04 0.00 4.07E-04 0.00 1.96E-03 -2.23E-04 0.00

MI1,2,1 MI1,3,0 MI2,0,2 MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0

DTC -7.35E-04 0.00 1.65E-02 0.00 3.84E-02 -5.77E-02 0.00 3.91
S-175 -3.35E-04 0.00 1.46E-02 0.00 3.03E-02 -4.59E-02 0.00 4.86
Series-60 -3.41E-04 0.00 1.70E-02 0.00 2.74E-02 -3.43E-02 0.00 3.24

Once GMIs of a design is obtained, all of its 35 components are added to the last row of the matrix containing388

the grid point coordinates of that design; see Fig. 13. Afterwards, zeros are added in the remaining 22 elements389

to complete the [25 × 57] dimensional matrix. Such matrices containing x, y and z coordinates, along with the390

corresponding GMIs, constitute the SST for each design in the training dataset and are provided as input when391

training the ShipHullGAN model. The rich representation of training designs resulting from the proposed shape392

encoding approach and their GMs generate high-resolution design, as they can learn more complex and hierarchical393

relationships between the initial distribution and the generated design.394

𝑥 =

243.00 242.76 242.5
242.24 241.98 241.71
241.54 241.25 240.96

242.25 241.98 240.63
241.44 241.15 239.78
240.67 240.37 238.96

239.13 237.48	 235.64
238.30 236.69 234.92
237.49 235.92 234.21

⋯
15.04
15.04
15.04

11.28
11.28
11.28

7.52 0
7.52 ⋯ 0
7.52 0

⋮ ⋱ ⋮
227.29 227.26 227.20
225.45 225.43 225.39
1.0000 0.7123 0.0761

227.11 226.92 226.50
225.33 225.15 224.87
0.0099 0 0.0007

225.91 225.35 224.77
224.45 224.06 223.66
0 −9.4𝑒 − 5 0

⋯
15.04
15.04
0.998	

11.28
11.28
0

7.52
7.52
0

⋯
0
0
0

Grid point coordinates

Geometric moments Adding zeros to 
complete the matrix

Figure 13: Structure of a matrix containing coordinates of the grid points and GMIs of a design in the training
dataset.

3.5 Enhancing shape diversity395

Inadequately trained GANs fail to model the entire design space corresponding to the training data, with the resulting396

generator producing designs only in “neighbourhoods” around design clusters in the dataset. This results in a non-397

uniform coverage of the design space and lack of diversity [57]. This problem is quite prominent when the training398

dataset is composed of designs with different classes, as in our present case. Generators with these limitations can399

be easily analysed by examining groups of similar or identical generated designs and noting any unwanted clustering400

behaviour.401

To reduce the likelihood of such an outcome, we introduce a space-filling criterion that enables ShipHullGAN to402

map latent features on the entire training space and enhance diversity. This criterion is implemented using the Audze403

and Eglais approach as presented in [18]. This approach achieves uniformity by mimicking the process of reaching404

minimum potential energy in physical systems. More specifically, it follows a physical analogy to the repulsive forces405
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exerted by molecules, designs, in our case, in space. The molecules are in equilibrium when minimum potential406

energy is reached, which subsequently guarantees uniform distribution over the entire design space. Assuming the407

existence of several design subclasses in the design space, the criterion for m designs from the generator is evaluated408

as409

S =
m−1∑
i=1

m∑
j=i+1

1

||xj − xi||22
. (10)

where, xi and xj constiture a pair of generated designs. Minimisation of S favours their uniform distribution of410

designs over the entire design space. For more details on space-filling, the interested reader should refer to [58].411

3.6 Loss function412

The space-filling term in Eq. (10) is then added to the original loss function of the GAN (see Eq. (1)), resulting in413

the new augmented loss function below:414

min
G

max
D

Ladv(D,G) + ΓG S, (11)

where ΓG controls the contribution of the space-filling term. Typically, at the initial phases of GAN training, the415

generation of invalid/unrealistic designs is more probable; therefore, at this stage, we set ΓG equal to 0 and increase416

it gradually during training so that ShipHullGAN focuses firstly on learning to generate realistic designs at the early417

stages and then space-filling criterion kicks in to uniformly generate designs in the design space. During training,418

ΓG is set on an escalating schedule proposed in [16], which is formulated as419

ΓG = Γ′
G

(
t

T

)p

, (12)

where Γ′
G is the value of ΓG at the end of training, t is the current training step, T is the total number of training420

steps, and p is a factor controlling the steepness of the escalation.421

3.7 Model architecture details and training considerations422

In this last part of section 3, we discuss some technical & architectural details about the ShipHullGAN model’s com-423

ponents, generator and discriminator, along with additional considerations for its input that will enable appropriate424

training of the proposed GAN model.425

3.7.1 Architecture of generator and discriminator426

As mentioned at the beginning of the section, the generator, G, and discriminator, D, are materialised via deep427

convolutional neural networks whose structure is shown in Fig. 14. The discriminative network, D, consists of 6428

convolutional layers and one input layer, which takes three [25× 57] matrices of grid points (x, y and z coordinates)429

augmented with 4th order GMIs. A dropout layer, with a dropout probability of 0.5, succeeds the input layer to430

prevent over-fitting on the training data. This layer acts as a mask that randomly nullifies the contribution of431

some neurons toward the next layer. An activation layer follows each convolutional layer with a leaky rectified432

linear activation function (ReLU). The last convolutional layer uses a sigmoid activation function that calculates the433

probability of a design being fake or real. For the second, fourth and fifth convolutional layers, batch normalisation434

is applied before the ReLU layer. The discriminator typically reduces data dimensions when assessing whether a435

design is real or fake in an operation that resembles downsampling when dealing with images. This downsampling436

in D is performed with strides of different padding sizes instead of the common pooling layer, as strides tend to437

improve the accuracy and stability of the model; see [13].438

The generator, G, is the transpose of D and comprises 5 transposed convolutional layers, along with an input,439

projection and reshape layer. The input layer takes a randomly sampled z from a given distribution and feeds it to440

the “project and reshape” layer. Apart from the last layer, each convolutional layer is followed by batch normalisation441

and ReLU. The last convolutional layer of G has an activation layer with a hyperbolic tangent function to ensure an442

output value between -1 and 1, generating the normalised [25 × 57] matrices corresponding to our SST.443

This architecture resulted from systematic experimentation described in §4 and secures an adequately stable and444

smooth training procedure; additional details about the selection process and possible enhancements are given in445

§4. Model training is performed with the Adam gradient descent algorithm on a PC with dual 24-core 2.7GHz446

Intel® Xeon® 6 Gold 6226 CPU, NVIDIA Quadro RTX 6000 GPU and 128GB of memory, using the following447

settings: number of epochs = 500; minimum batch size = 128, learning rate = 0.0002 and gradient decay factor =448

0.5. Generator and discriminator networks employ 9.7 and 9.6 million learnable parameters, respectively.449
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Figure 14: Convolutional architecture of the generator used in ShipHullGAN.

3.7.2 Size of the input feature vector z450

Unlike other techniques, such as principal component analysis (PCA) and others, the determination of the latent451

vector’s (z) size can be challenging in GANs. The deep convolutional neural networks utilised for both generator and452

discriminator allow our model to generate samples of higher quality, as they capture the hierarchical features of the453

target data distribution. This not only stabilises the training process but also helps to avoid mode collapse. However,454

an inappropriate size for z can still lead to mode collapse, with the generator mapping multiple z vectors to the same455

output [57]. Especially when z is small, the possibility of the generator’s failure to cover the entire training dataset456

distribution increases, and it may produce many invalid designs and/or designs with minimal diversity. Obviously,457

a larger z may resolve this, but not without cost since large vectors correspond to high-dimensional design spaces458

when performing shape optimisation, which increases the computational complexity of the entire simulation-driven459

design pipeline [30]. Therefore, for estimating a sufficient but not redundant size of z, we perform PCA and use the460

number of eigenvalues required for achieving a target variance as a reasonable estimation of the initial size of z.461

0 5 10 15 20 25 30 35
Number of latent features [z]

40

50

60

70

80

90

100

V
ar

ia
n
ce

re
ta

in
ed

[%
]

Figure 15: Percentage of variance retained versus size of z.

As it can be easily seen from Fig. 15, 30 latent features in z can capture 99% of geometric variance. We, therefore,462

set the initial size of z to 30 and then reduce it iteratively while measuring the diversity, novelty, and maximum mean463

discrepancy (MMD) [13] of generated designs. The variety and novelty are estimated with the sparseness at the464

centre (SC) [59] and the novelty score described in [16], respectively. The MMD metric is evaluated using Eq. (13)465

below, which measures the similarity between the distribution of designs in the training dataset and designs resulting466

from the generator. A high value of the MMD means that the generator cannot completely cover the design space467

in the training dataset, which may indicate a mode collapse issue. We may also note here that as GAN incorporates468

nonlinear layers, it should be able to capture the variability and nonlinearity in the training dataset with fewer latent469

variables compared to PCA. Thus, the initial size 30 can also be considered as an upper bound for the size of z.470

MMD =
1

n2

n∑
i=1

n∑
j=1

k
(
xi,xj

)
+

1

m2

m∑
i=1

m∑
j=1

k
(
xi
GAN ,xj

GAN

)
− 2

nm

n∑
i=1

m∑
j=1

k
(
xi,xj

GAN

)
, (13)

In the above equation, x and xGAN correspond to designs in the training dataset and designs generated from the471

generator, respectively, with n and m being the corresponding total numbers of the two sets of designs. Finally, k is472

a radial kernel function defined as473
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k(x,y) = exp

(
−||x− y||2

2θ2

)
, (14)

with θ = 0.1.474

We evaluate SC and novelty metrics using Eqs. (15) and (16), respectively. The SC measures the average distance475

of the centroidal design, xcentroid
GAN , to the m designs resulting from ShipHullGAN. In contrast, novelty evaluates how476

different newly generated designs are from the designs in the training dataset, X . It is estimated first by finding the477

nearest distance between the ith new design, xi
GAN , and all n designs in X , and then by averaging all of those m478

nearest distances.479

SC =
1

m

m∑
i=1

||xcentroid
GAN − xi

GAN ||2 (15)

Novelty =
1

m

m∑
i=1

min
xj∈X

||xi
GAN − xj ||2. (16)

Here, xj are the designs in the training dataset, X .480
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Figure 16: Plots depicting the value of (a) SC, (b) MMD and (c) novelty metrics evaluated using Eqs. (15), (13) and
(16), respectively, versus the number of employed latent features.

We analyse the influence of latent space dimensionality against these three metrics in Fig. 16. Higher values of481

SC and novelty generate diverse designs, while low values of MMD correspond to good coverage of the design space482

X by the generator. Fig. 16 clearly indicates that as the number of latent features increases, diversity and novelty483

increase approximately up to the number of 20 features and then tend to plateau. In contrast, the MMD reduces484

rapidly and reaches a sufficiently low value with 5 features. As mentioned earlier, The size of the feature vector z485

plays a crucial role in the output of the generator. A small size may result in irregular or identical geometries, while486

a large size leads to a high-dimensional design space for optimisation, as previously discussed in literature [13, 30].487

Therefore, in view of these points, analysis of results in Fig. 16 indicate that 20 features is a well-balanced selection488

for the size of z, and as it will be demonstrated in the subsequent section, a generator trained with 20 features489

produces valid and physically-plausible designs.490

4 Experiments: Design synthesis and optimisation491

This section presents the process and experimentation results used to validate the appropriateness and efficiency of492

the proposed model.493

4.1 Design reconstruction494

After the training process has been completed, we use the generator of the trained model as a parametric modeller495

with 20 parameters ranging between -1 and 1, generating design in a 20-dimensional subspace, Z. For an input vector496

z sampled from Z, the generator produces three [25 × 57] matrices corresponding to the x, y and z coordinates of497

grid points of a new design. Recall that the last row in these matrices corresponds GMIs; therefore, we remove this498

row from all three matrices to construct the final shape. The shape reconstruction using a NURBS surface of the499

new design is generated by first fitting a NURBS curve to the points of each cross section (CS); see Fig. 17(a).500

Then, the 3D surface representation is created by interpolating the reconstructed CSs with a bicubic NURBS surface501

using a skinning scheme (a.k.a. loft operation) as shown in Fig. 17(b). The resulting surface is smooth and fair with502

sufficient continuity, as indicated by using an isophotes mapping analysis (zebra stripes) on the reconstructed hull503

surface shown in Fig. 17(b)). The smooth transition of the zebra stripes on the surface indicates a smooth and fair504

hull surface of C2 continuity.505
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(a)

(b)
(c)

Figure 17: (a) Interpolation of points of CSs using cubic NURBS curves. (b) Construction of NURBS surfaces
interpolating the curves with a loft operation. (c) Inspection of hull surface fairness using isophotes mapping
analysis.

Indicative variations of the ship hulls generated using the ShipHullGAN model are shown in Fig. 18. From a506

visual inspection of these designs, a designer can easily conclude that these designs are physically valid and plausible507

with distinct geometric features and characteristics. One can also quickly identify augmented features from the508

designs in the training dataset on several of the generated designs. In Fig. 19, we depict three generated hulls from509

the ShipHullGAN model and the correspondence of their features to existing hulls. For example, the new design510

on the top right corner of Fig. 19 adopts features in the bow (green arrows), aft (grey arrows), and stern (orange511

arrows) regions, resembling JBC, Megayacht and DTC parent hull features8, respectively. This supports our claim512

that the proposed generic parametric model can generate hulls with diverse features from completely different ship513

hull types, which is one of the features existing parametric modelling approaches in hull design largely lack.514

Figure 18: Design variations created with ShipHullGAN. Randomly sampled designs from Z and design variations
resulting from changing each of the variables in z can be visualised at https://youtu.be/ZIfmAs5-qFw and https:

//youtu.be/avlq0FxZP-s, respectively.

4.2 Design validity and diversity515

The geometric validity of designs resulting from the model is partially tested by searching for designs with self-516

intersecting geometries. We randomly sampled 30,000 designs over ten runs and searched for self-intersecting ge-517

ometries. Interestingly enough, no self-intersections were found in any of the 300,000 tested designs. This is a518

strong indication that the ShipHullGAN model is robust and efficient, and these properties are attributed to its519

convolutional architecture, reliable training and inclusion of GMIs in the SST.520

8see also Fig. 5
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Figure 19: Examples of newly generated designs using ShipHullGAN adopting features from parent designs in Fig. 5.

Figure 20: Example of implausible designs.

However, even though no self-intersecting geometries were detected, some of the ShipHullGAN-generate designs521

may be implausible from a practical point of view. Examples of such designs are shown in Fig. 20. Nevertheless, the522

possibility of receiving such designs is rather low as a visual inspection of large numbers of randomly sampled designs523

resulted in less than 1 out of 70 instances with questionable designs. However, such designs can be eliminated by524

setting appropriate design constraints and/or employing the physical solver to rule out such designs during design525

optimisation.526
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FORMDATA KCS Megayacht Pilot Boat Pram-Type
Global-S KVLCC New Designs Convex Hull of X

Figure 21: t-SEN plot of some design in the training data and newly generated designs from the ShipHullGAN
model.

We also use t-distributed stochastic neighbour embedding (t-SNE) [60] to analyse further the diversity and its527

ability to cover the design space of the training data. t-SNE is a statistical method for visualising high-dimensional528
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data by giving each data point a location in a 2D or 3D map and can provide some indication of the distribution of529

designs. From Fig. 21, it can be seen that newly generated designs cover well the entire convex hull enclosing the530

designs in the training dataset. It should be noted that the topology of the t-SNE plot, more precisely the distance531

between the cluster, their size and orientations, may not have any physical meaning; therefore, in the present case,532

it’s mainly used to visualise the distribution of generated designs within the training space. Moreover, as can be seen533

in the same figure, some of the new designs reside out of the convex hull, which according to [16], further indicates534

the ability of the generator to create novel designs. In summary, these results demonstrate that the parametric535

modeller resulting from ShipHullGAN is able to generate536

1. designs similar to the training dataset (new designs overlap the existing ones),537

2. designs with augmented features from different classes of design in the training dataset (new designs between538

the clusters), and539

3. completely novel designs (new designs outside the convex hull).540

4.2.1 Comparison with GAN541

We finally compare ShipHullGAN with a GAN model trained with the exact same settings and architecture as542

ShipHullGAN but without space-filling and GMIs components to highlight their respective impact. We first evaluate543

the SC metric for both models, using 30,000 randomly sampled designs over ten runs (300,000 designs in total). The544

results of this experiment are shown in Fig. 22. It can be easily seen that the ShipHullGAN model shows significantly545

higher diversity and novelty compared to the GAN. We also conducted a t-test to see if there exists a significant546

difference between the diversity values. The p−values resulting from this test are 3.7354E − 09 and 2.1315E − 09,547

respectively, which are lower than 0.05, indicating a significant difference.548

ShipHullGANShipHullGAN

Figure 22: (a) Diversity and (b) novelty of designs created with the generator of GAN and ShipHullGAN.

Furthermore, we also analysed the ability of GAN to produce valid designs, i.e., designs with non-self-intersecting549

surfaces, by once again sampling 30,000 designs over ten runs and averaging the number of invalid over valid designs.550

As discussed earlier, for a similar test, ShipHullGAN resulted in zero invalid designs; however, approximately 4.32%551

of designs resulting from GAN were invalid. Although this difference is not so significant, it still demonstrates the552

capability of ShipHullGAN to produce valid geometries, mainly due to the usage of geometric moments in the SST.553

Moreover, most invalid designs resulting from GAN have self-intersecting surfaces near the bow of the hull, see554

Fig. 23, which is a local feature. This shows that the GAN fails to capture the local features of the designs well due555

to the absence of rich information about the geometry, which in ShipHullGAN is given with the SST.556

Figure 23: Examples of invalid (self-intersecting) designs resulted from the GAN model. The red curve indicates the
regions of intersection.
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4.3 Optimisation case studies557

The generic capabilities of the ShipHullGAN modeller can be exploited in different ways to support the designers558

throughout all three stages of the ship design; i) concept/preliminary design, ii) contract (full) design, and iii) detail559

(build) design, especially at the former two. In this section, we showcase two typical optimisation scenarios to help560

the readers envision how designers can use ShipHullGAN in practice in the preliminary and contract design phases.561

As previously mentioned, ship hull optimisation is typically performed during the later stages of preliminary design562

or the contract phase for a specific parent design that aligns with the given constraints and owner requirements.563

This is mainly due to the fact that existing parametric approaches can handle a single hull type and cannot aid564

the designer in the early phases of the preliminary design stage, where identification of a parent design and/or565

exploration of various innovative candidate solutions are essential.566

4.3.1 Early-stage design optimisation567

With the aid of the generic parametric capabilities of ShipHullGAN, one can initiate design optimisation from the568

early preliminary design stages with a set of preliminary optimisation criteria, e.g., resistance for a range of speeds,569

and constraints, e.g., displacement, maximum breadth (e.g., to enable passing through the Panama channel) or570

maximum draft (e.g., for accessing specific ports). To showcase these capabilities, a simple optimisation problem is571

formulated aiming to explore the design space, Z, for a container ship with a load-carrying capacity of 3600 TEU572

(Twenty-foot equivalent unit) and an oil tanker with 300,000 tons capacity with improved wave resistance coefficient573

Cw by solving the optimisation problems in Eq. (17) and (18) below, respectively. Note that Cw = 2Rw/(ρU2S),574

where Rw denotes the wave resistance, ρ is the density of the seawater, U is the ship’s speed and, finally, S is the575

wetted surface of the ship hull.576

Find z∗ ∈ R20 such that

Cw(z∗) = min
z∈Z

Cw(z)

subject to: given cargo capacity (3600 TEU);

51120.5m3 ≤ Volume of displacement (∇) ≤ 56501.6m3;

220.9m ≤ Length at waterline (Lwl) ≤ 244.2m;

30.6m ≤ Beam at waterline (Bwl) ≤ 33.8m;

10.3m ≤ Draft (T ) ≤ 11.3m.

(17)

Find z∗ ∈ R20 such that

Cw(z∗) = min
z∈Z

Cw(z)

subject to: given cargo capacity (300,000 tons);

298723.8m3 ≤ ∇ ≤ 330168.5m3

309.2 ≤ Lwl ≤ 341.8m;

30.6m ≤ Bwl ≤ 33.8m;

19.8 ≤ T ≤ 21.8m.

(18)

KCS

Optimised

Figure 24: (a) Convergence plot of Cw during the first 100 optimisation iterations. (b) 3D surfaces of the KCS and
the ShipHullGAN-optimised hull with the same cargo capacity.

The constraints in Eqs. (17) and (18) are set to derive an optimised design comparable to the KCS and KVLCC2577

hulls shown in Fig. 5. The KCS is the well-known 3600 TEU KRISO container ship designed by the Maritime and578

Ocean Engineering Research Institute (MOERI), while the KVLCC2 (KRISO Very Large Crude Carrier) represents579
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a typical 300,000 tons tanker hull form which has been the subject of several experimental and computational studies580

in the pertinent literature.581

The optimisation problems above are solved using Jaya Algorithm (JA), a simple yet efficient optimiser; see582

more details in [61]. Hydrodynamic simulations for evaluating Cw are performed using a software package based on583

linear potential flow theory using Dawson (double-model) linearisation, with details of the employed formulation,584

the numerical implementation, and its validation appearing in [62]. As a result of using simple Rankine sources, the585

computational domain consists of a part of the undisturbed free surface, extending 1Lpp upstream, 3Lpp downstream,586

and 1.5Lpp sideways, with Lpp denoting the length between perpendiculars for the assessed ship hull. A total of587

[20 × 70] grid points are used for the undisturbed free surface, whereas [50 × 180] grid points are used for the hull588

discretisation with the simulation being performed at a Froude number Fr equal to Fr = U/
√
gL = 0.28, where g589

is the acceleration due to gravity, and L is the ship’s length. Furthermore, as JA employs a stochastic approach,590

results may slightly differ in each run; therefore, three runs are performed and averaged results are presented in this591

work. Figures 24(a) and 25(a) display the convergence graph of Cw over the first 100 iterations of the best of three592

runs; a total of 500 iterations is performed in each run. The optimised designs obtained in these cases, along with593

original KCS and KVLCC2 geometries, are depicted in Figs. 24(b) and 25(b).594

Figure 25: (a) Convergence plot of Cw during the first 100 optimisation iterations. (b) 3D surfaces of the KVLCC
hull and the ShipHullGAN-optimised hull with the same cargo capacity.

The optimised designs in Figs. 24(b) and 25(b) achieve Cw values of 5.932E-04 and 2.646E-03, respectively, and595

comply with all the design constraints set in Eqs. (17) and (18). Table 2 summarises the results for the optimisation596

examples performed in this section. The achieved Cw values are lower than the corresponding values of the parent597

KCS and KVLCC2 hulls, which are calculated at 2.477E-03 and 6.810E-03, respectively. As one may easily observe,598

the reported improvement is high, but this can be justified by taking into account a number of issues related to the599

optimisation setting and the limitations of the solver:600

1. The obtained optimised designs differ significantly in shape from the corresponding KCS and KVLCC2 designs,601

as can be easily seen by observing the stem and stern areas in Figs. 24(b) and 25(b). These designs are not602

traditional variations of the parent ones but stem from a more global shape optimisation, which is commenced603

without a parent design and, as a result, enables significant improvements604

2. In these case studies, the quantity of interest is the wave-making resistance coefficient. If we included the605

remaining parts of the resistance, a more moderate improvement would be observed; for example, the obtained606

optimised designs possess a larger wetted surface, increasing the frictional resistance component.607

3. Although potential flow codes are fast and efficient and are commonly employed in the early stages of the608

hull design process for exploring the design space by comparing quickly many design alternatives, they may609

not provide reliable performance evaluation, primarily when the design under consideration is composed of610

unconventional features. Therefore, in the future, we aim to run large-scale optimisation by employing com-611

putationally intensive CFD solvers to properly handle the impact of viscosity on total resistance.612

Nevertheless, these results demonstrate the generic parametric capabilities of the ShipHullGAN modeller that, under613

different design considerations, it cannot only create different valid design geometries but also demonstrate its614

capacity for design optimisation.615

4.3.2 Conventional optimisation616

We now proceed with another example aiming to test the performance of ShipHullGAN in the context of conventional617

parametric modelling, where parametric modellers are developed using a specific hull type in order to produce a design618

space capable of creating design variants around a given parent hull. For this purpose, we assume the crew supply619

vessel hull shown in Fig. 5 as the parent hull and extract its closest design, zcs, from the employed design space Z.620

In sequel, we use zcs as the parent hull and consider a subspace, Zcs, in the neighbourhood of zcs, by appropriately621
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Table 2: Main particulars and Cw of KCS, KVLCC and Crew Supply vessel hulls and the optimised designs in the
Figs. 24, 25 and 26.

KCS Optimised in Fig. 24 KVLCC Optimised in Fig. 25 Crew Supply Optimised in Fig. 26

Llw 232.5 229.6 325.5 320.7 34.7 34.7
Bwl 32.2 31.8 58 58 6 5.8
T 10.8 10.5 20.8 20.8 0.9 0.9
∇ 53811 51370 314446 301852 56.8 55.4
Cw 2.48E-03 5.93E-04 6.81E-03 2.65E-03 2.66E-03 1.03E-03

limiting the original design space Z. This is aligned with the conventional parametric modelling approach, in which622

slight variations of the parent hull are considered. Specifically, this subspace is defined in the range [0.90zcs, 1.10zcs],623

which permits a 10% variation from the parent design. The optimisation process in Eq. (19) is executed utilising624

the newly established subspace.625

Find z∗cs ∈ R20 such that

Cw(z∗cs) = min
zcs∈Zcs

Cw(zcs)

subject to 53.96m3 ≤ ∇ ≤ 59.64m3,

33.0 ≤ Lwl ≤ 36.4m,

5.55m ≤ Bwl ≤ 6.13m,

0.86 ≤ T ≤ 0.95m.

(19)

The results of this experiment are shown in Fig. 26 while the Cw values of zcs and its optimised version are 2.66E−03626

and 1.03E−03, respectively, which show a substantial reduction in the Cw. Table 2 summarises the results obtained627

for all three examples of this section.628

(b)(a)

Parent

Optimised

Figure 26: (a) Convergence plots of Cw during the first 100 optimisation iterations performed in Zcs. (b) 3D surfaces
of zcs and its optimised variant found in Zcs.

5 Concluding remarks629

In this work, we demonstrated the first application of deep convolutional generative adversarial networks for the630

parametric modelling and design optimisation of ship hulls. We first present a new architecture of GANs employing631

a space-filling layer to ensure the generator’s capacity to cover all design classes in the design space. We have addi-632

tionally introduced geometric moments (GMs) to the network model, along with an appropriate shape representation633

in the form of a Shape Signature Tensor (SST). GMs provide rich information about the overall design’s geometric634

structure, and specifically for the ship design case, they also induce the notion of physics. This approach results635

in a robustly trained generator consistently producing geometrically valid design instances and practically feasible636

hull form shapes. The capability of the developed ShipHullGAN model is assessed using a variety of metrics and637

demonstrated with the help of a series of indicative ship hull design optimisation problems.638

5.1 Future work639

Future extensions of this work aim to conduct a large-scale and multiobjective shape optimisation with the integration640

of all the components of resistance evaluated with CFD solvers. Moreover, we aim to target the enforcement of the641

physics-informed component by training ShipHullGAN simultaneously for physics (similar to reduce-order modelling)642

and geometries, with a fully connected layer for physics prediction.643
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Furthermore, we also plan to investigate the potential benefits of incorporating harmonic mapping [63] to deter-644

mine whether it can enhance the representation and reconstruction of shapes in the training dataset, and subsequently645

improve the design generation capabilities of the proposed ShipHullGAN model.646
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