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Adaptive Inspirational Design
Stimuli: Using Design Output to
Computationally Search for
Stimuli That Impact Concept
Generation
Design activity can be supported using inspirational stimuli (e.g., analogies, patents) by
helping designers overcome impasses or in generating solutions with more positive charac-
teristics during ideation. Design researchers typically generate inspirational stimuli a
priori in order to investigate their impact. However, for a chosen stimulus to possess
maximal utility, it should automatically reflect the current and ongoing progress of the
designer. In this work, designers receive computationally selected inspirational stimuli
midway through an ideation session in response to the contents of their current solution.
Sourced from a broad database of related example solutions, the semantic similarity
between the content of the current design and concepts within the database determines
which potential stimulus is received. Designers receive a particular stimulus based on
three experimental conditions: a semantically near stimulus, a semantically far stimulus,
or no stimulus (control). Results indicate that adaptive inspirational stimuli can be deter-
mined using latent semantic analysis (LSA) and that semantic similarity measures are a
promising approach for real-time monitoring of the design process. The ability to
achieve differentiable near versus far stimuli was validated using both semantic cosine sim-
ilarity values and participant self-response ratings. As a further contribution, this work also
explores the impact of different types of adaptive inspirational stimuli on design outcomes
using a newly introduced “design innovation” measure. The design innovation measure
mathematically captures the overall goodness of a design concept by uniquely combining
expert ratings across easier to evaluate subdimensions of feasibility, usefulness, and
novelty. While results demonstrate that near inspirational stimuli increase the feasibility
of design solutions, they also show the significant impact of the overall inspirational stimu-
lus innovativeness on final design outcomes. In fact, participants are more likely to generate
innovative final design solutions when given innovative inspirational stimuli, regardless of
their experimental condition. [DOI: 10.1115/1.4046077]

Keywords: conceptual design, creativity and concept generation, design theory and
methodology

1 Introduction
A wide variety of literatures demonstrate the impactful nature of

inspirational stimuli on design ideation, such as their ability to assist
designers in developing solutions with improved characteristics
(e.g., increased solution uniqueness and/or feasibility) [1–4]. Addi-
tionally, the distance of the inspirational stimulus from the problem
domain modulates its impact [5]. Typically, the “distance” of an
inspirational stimulus refers to some measure of a stimulus’ proxim-
ity to the problem or design space currently occupied by the
designer. When viewed on a continuum, the measure of distance
of a stimulus is quantifiable using a variety of techniques, such as
semantic similarity comparisons or the similarity between func-
tional representations of designs. One can think of a “near” or
“close” inspirational stimulus as one that comes from the same or
a closely related domain as the problem. Conversely, a “far” stimu-
lus comes from a distant domain. It has also been noted that near
stimuli share significant surface level (object) features with the

target, while far stimuli share little or no surface features [6].
However, a critical and currently overlooked consideration impact-
ing these findings is that the relative position of a designer within
the design space is not static; it dynamically changes throughout
problem solving.
Since the distance of an inspirational stimulus is relative, a design

solution evolving during ideation therefore directly determines what
constitutes a stimulus as being either near or far. In other words, a
far stimulus at the onset of design ideation is not necessarily the
same distance as a far stimulus at the midpoint of design ideation.
A goal of our research is to develop an individualized tool that
enables designers to leverage the full power of inspirational
stimuli during design ideation and problem solving. For this to be
the case, such a tool should adapt to the current state of the designer
in order to provide a stimulus that reflects the designers’ location
within the design space. However, most current approaches to
selecting design stimuli are not responsive or adaptive to the
dynamic state of designers. Typically, stimuli presented during cog-
nitive studies are determined a priori.
The work presented in this paper contributes to and advances this

ongoing research area by computationally selecting inspirational
stimuli based upon a measure of the real-time status of designers’
completed activity. First, our approach determines the location of
a designer within a larger design space halfway through an ideation
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session (referred to as their current “state”). To accomplish this, we
employ a method of semantic similarity comparisons, computation-
ally comparing the textual work of the designer to a pre-existing
database of design concepts collected as part of a prior research
study [1]. Using this information, an adaptive intervention is pro-
vided to the designer via a stimulus that is either near or far,
based upon the semantic similarity between all designs within the
database and their current design. Thus, the overall goals of this
work include (1) determining whether or not the chosen method
of design state detection and adaptive intervention is feasible (i.e.,
whether a design state can be measured in real time), quantifiable
(i.e., whether textual similarity can be used to provide near and
far adaptive stimuli that are significantly different), and perceivable
(i.e., can participants distinguish the differences between these cat-
egorizations) to designers, and (2) understanding the impact of
adaptive stimuli on measurable design outcomes including the
novelty, feasibility, and usefulness of design concepts.

1.1 Analogical Reasoning in Engineering Design. Prior
work on the role of inspirational stimuli has predominately
focused on “analogical reasoning” applied to design. However, it
is currently debated whether this term is always appropriate for
the design contexts in which it is used [7]. Formally, analogical rea-
soning is the process of retrieval and mapping of relations or infor-
mation from a source to a target [8–10]. In this work, the term
“inspirational stimulus” is utilized to more broadly encompass
other types of stimuli intended to support design ideation that
may not satisfy both of these conditions (retrieval and mapping).
For example, a prior solution provided to a designer may enhance
the likelihood of retrieving a useful concept from memory but
does not guarantee a direct mapping incorporating aspects from
the stimulus in a new solution for the problem.
The relationship between the distance of inspirational stimuli and

solution outcomes is also well-studied. One intriguing result is the
notion of a “sweet spot” (between near and far) of distance from a
stimulus to the problem domain, in which a stimulus is most impact-
ful [5]. Because defining a sweet spot for a given research problem
is an open area of research itself, most research investigations rely
on the comparison between near and far stimuli. Recently, Goucher-
Lambert and Cagan analyzed the impact of stimulus distance on the
novelty (i.e., uniqueness), feasibility, and usefulness of solution
concepts across a wide variety of conceptual design problems
from the literature [1]. That work revealed that near stimuli
improved the usefulness and feasibility of design solutions com-
pared to a control, whereas far stimuli improved the novelty of solu-
tions. Additionally, separate work by Goucher-Lambert et al.,
utilized functional magnetic resonance imaging to study neural acti-
vation patterns underpinning generating design concepts with and
without inspirational stimuli of varying distances [11]. In that
work, inspirational stimuli defined as close to the problem space
activated a unique set of brain regions supporting memory retrieval
and solving problems via insight (rather than by analysis) [11].
Across these two studies, closer stimuli were found to more reliably
associate with positive ideation outcomes based on both behavioral
and neuroimaging data. Other researchers have also found support-
ing evidence that conceptually near stimuli may, in fact, lead to
better design outcomes than far stimuli [12]. As an additional con-
tribution, the work presented in the current paper explores the
impact of inspirational stimulus distance on design outcomes, build-
ing on the aforementioned findings.

1.2 Finding and Applying Design Interventions. When
should inspirational stimuli be provided to aid designers? Previous
research has demonstrated that interventions are best introduced to
problem solvers when there exists an open goal (i.e., when the
solver has an understanding of the goal(s), they are trying to accom-
plish, but have not yet become fixated on a specific solution) [13–
16]. Based on this, it would appear that inspirational stimuli
should be presented at some point during problem solving, before

the designer has become fixated or has reached an impasse.
However, the difficultly lies in determining the exact moment that
someone has reached such an impasse.
Instead of trying to provide a designer with an inspirational stimu-

lus at the correct moment, a different approach allows designers to
search for stimuli on their own using structured inputs. One such
example is ontology-based frameworks where designers can search
for text or image-based stimuli by specifying the object (e.g.,
chair) and function (e.g., to sit) of their ideas [17–19]. Recently, in
the Human and Computer Interaction community, computational
tools have been developed that allow for semi-directed analogy
mining. Past approaches at solving this problem included
word-embedding models such as GloVe [20] and an analogical
search engine by Gilon et al., which looks for distant analogies for
specific aspects of a product or a design [21]. Additionally, Chan
et al. developed an approach termed SOLVENT, which draws on
pre-annotations by humans regarding different features of possible
stimuli (e.g., purpose,mechanisms, findings) andmakes connections
based upon semantic representations [22]. While this work is prom-
ising, future work in this area is necessary to reduce the burden on
designers using these tools to search for relevant analogous exam-
ples. The current approach differs from these past contributions by
trying to determine design stimuli based on unstructured rather
than structured inputs.
Another approach is to recruit the resources of an expert to help

guide a designer toward unexplored areas of the design space. One
initial step toward real-time management was an empirical study by
Gyory et al. that investigated the characteristics of process manage-
ment that are most effective for design teams [23]. In that
exploratory work, a human process manager oversaw the
problem-solving process of a collaborative design team solving a
conceptual design problem. The managers tracked the state of the
designers within the team and freely intervened with prescribed
stimuli (e.g., design components, select keywords, and/or design
strategies) to affect the solving process when deemed necessary.
These interventions adapt to a team’s state, since the managers pro-
vided stimuli they felt were necessary in reaction to the design
team’s activity. Teams that were under the guidance of these
process managers significantly outperformed teams that were not
in terms of the quality of their solution output. The work by
Gyory et al. exemplifies the benefits of real-time management and
intervention in design teams. In the current work, we build on
this idea further by computationally providing real-time adaptive
stimuli through semantic similarity comparisons.

1.3 An Approach to Compare Design Content: Latent
Semantic Analysis. In order to conduct semantic similarity com-
parisons that determine the designers’ current state, as well as
select the specific adaptive stimulus to provide them, latent seman-
tic analysis (LSA) was used. LSA computes the semantic similarity
between text-based corpuses and has been shown to be well-suited
to a variety of semantic comparisons relevant to design. For
example, LSA has been used to quantify the level of semantic con-
vergence in language-based communication between members in
design teams [24,25], uncovering patterns in design repositories
such as the US patent database [26], and visualizing the similarity
between existing design concepts within a predefined design
space in a network model [27].
LSA uses singular value decomposition (SVD) for dimension

reduction [28]. Within this reduced space, semantic patterns can
be uncovered between text-based documents by tracking the
co-occurrence of words (represented as vectors). The cosine simi-
larity between document vectors, which analytically computes
semantic similarities, varies between zero (if the vectors are
completely orthogonal and exhibit no similarity) and one (if the
documents are identical). The current work leverages this analyti-
cal power of LSA to select design artifacts (inspirational stimuli)
semantically near and semantically far from the designer’s
current concept. The design concept is input as an unstructured
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description of what the designer believes is currently their best
design solution.

1.4 Approaches for Measuring and Evaluating Conceptual
Designs. In order to study the impact of the introduced adaptive
design intervention, this work relies on evaluations performed by
trained expert raters (discussed in Sec. 2.4). One such evaluation
performed by expert raters is to assess the overall design quality
of each conceptual design. Design quality is a prominent measure
throughout the design literature, with the most common definition
of design quality being what Shah et al. term “a measure of the fea-
sibility of an idea and how close it comes to meet the design speci-
fication” [29]. In their popular paper on metrics for ideation
effectiveness, Shah et al. represent quality as both tangible, physical
characteristics of a design, as well as the functional performance
metrics describing the nature of designs. Ahmed et al. provide a
similar, but more precise definition for the utility of a design as:
“a measure of the designs’ performance and can depend on multiple
domain dependent factors like functionality, feasibility, usefulness,
impact, investment potential, scalability, etc.” [30]. Some works
have used less specific derivatives. For example, Hu and Reid
attribute quality to be characteristics of “the physical property,
user adoption, and cost-benefit ratio” [31]. Although this list is
not exhaustive, it is clear that most, if not all, definitions realize
quality as a multidimensional construct; some definitions focus
on function, some focus on form, and others an amalgamation of
the two.
How, then, are raters supposed to accurately assess such a metric

when attempting to take into consideration, or even deduce, its
various subdimensions? The subjectivity of measuring quality
may very well stem from its dimensional and semantic uncertainty
[32]. Furthermore, without a more discrete hierarchy, it is possible
for raters to internally weigh the underlying subdimensions differ-
ently during assessments, leading to yet another source of subjectiv-
ity. Motivated by this concern, the current work explores the use of
a new measure to represent the overall innovative potential of con-
ceptual designs. Unlike quality, this new measure consists of three
distinct subdimensions (feasibility, usefulness, and novelty) and
directly describes how they should be combined.
While various forms for design quality exist, they undeniably

have certain dimensional commonalities. Even from the few defini-
tions mentioned earlier, both Shah et al. and Ahmed et al. consider
feasibility, or the level at which an idea is physically realizable [33].
Additionally, any design artifact must be able to satisfy its intended
goal and meet all the design specifications and engineering con-
straints. Otherwise, the concept would not be useful in any form
or function. Evidently, these two subdimensions (feasibility and
usefulness) are commonly considered factors in the various defini-
tions of design quality, even if not explicitly termed by researchers
as such.
Novelty is a less common design metric to associate with

quality. Still, many researchers consider novelty in terms of idea-
tion effectiveness and divergent thinking [29], with a common def-
inition being the uniqueness of a design within a predefined set of
concepts [34]. Important in ideation applications, novelty can lead
to a higher probability of producing higher quality solutions via
expanding the design space. In terms of product deployment, the
novelty of a design can set products apart from each other, espe-
cially when products are similarly effective in their function.
Therefore, novelty is a facet of innovation in an increasingly com-
petitive marketplace and a dimension considered moving forward
[35,36].
A previous study correlated quality with each of these dimen-

sions (feasibility, usefulness, and novelty), on a corpus of design
concepts originating from a cognitive experiment with 1106
designs [1]. The concepts represented solutions to four distinct
design problems (electricity: n= 254, phone: n= 290, joint: n=
276, and surface: n= 286). External evaluators, all mechanical
engineering graduate students, rated the designs on the metrics of

feasibility, usefulness, novelty, and quality, each on a range from
zero to two. The interclass correlation coefficient was calculated
on a subset of the designs for each design metric separately ( feasi-
bility: ICC= 0.77, usefulness: ICC= 0.65, novelty: ICC= 0.71,
and quality: ICC= 0.50). All resulted in good or excellent consis-
tency among raters, except for quality, which exhibited only a fair
consistency. Correlations between dimensions, e.g., quality/feasi-
bility (r= 0.43) and quality/usefulness (r= 0.73) were moderate
to strong. However, there was no correlation between novelty
and quality (r= 0.04). The latter result is not surprising, as the
authors do not expect novelty, when considered by itself, to repre-
sent quality (i.e., novel designs may be poor designs). But as men-
tioned previously, novelty is still an important dimension for
innovation. Thus, a focus of this work is defining a new and
aptly named measure for design potential as design innovation, I,
which considers the feasibility, usefulness, and novelty of a
design concept.

2 Methodology
To test the feasibility and impact of utilizing LSA to determine

inspirational stimuli in response to the current design state of the
designer, a human cognitive experiment was developed. The exper-
iment explored the effects of two different LSA-determined dis-
tances of inspirational stimuli (near versus far), as well as a
control condition where participants were not provided with any sti-
mulus. Their intermediate and final designs were evaluated across a
number of outcome measures of interest, including feasibility, use-
fulness, and novelty.

2.1 Participants. Sixty-six participants (17 males and 49
females) were recruited for the cognitive study using a call for
participation at Carnegie Mellon University and offered $10 com-
pensation for their participation. All participants read, agreed to,
and signed a consent form. Demographics consisted of both uni-
versity undergraduate and graduate students from a variety of
majors and research interests including engineering, fine arts, com-
puter science, and social sciences. Data from six participants
became corrupted during data collection and were thus excluded
from the analysis.

2.2 Experiment Overview. Participants recruited for the cog-
nitive study completed the 30-min experiment, outlined in Fig. 1.
For the entirety of the experiment, participants interacted with a
graphical-user interface (GUI), coded in MATLAB, which displayed
the experiment instructions, the problem statement, and a count-
down timer during the problem-solving blocks. After reading
through the experiment instructions, participants received the
problem statement, which asked them to think of solutions to “min-
imize accidents from people walking and texting on a cell phone”
(abbreviated). This design problem, adopted from the work by
Miller et al. [39], has been previously utilized by a portion of the
current research team in similar concept generation and design ide-
ation tasks [1,11,27,37].
After reading through the experiment instructions and the

problem statement at their own pace, participants began generating
solution concepts using paper and a digital pen (Neo Lab M1). The
digital pen operated in the same way as a traditional pen but tracked
pen strokes using a built-in camera (not analyzed in this study). Par-
ticipants had 10 min to ideate and were encouraged to generate as
many concepts as they wanted using any combination of textual
and/or pictorial representations. At the end of the first 10-min
problem-solving block, the GUI instructed participants to type a
75-word textual description of one design solution in response to
the following prompt: “Please provide what you consider to cur-
rently be your best solution.” Using this textual description of
each participant’s current solution, LSA was run to make semantic
comparisons between their solution text document and each of the
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115 existing stimuli text documents within the design database
(described in Sec. 2.3). The resulting [116 × 116] output matrix
from the SVD algorithm was unique to each participant, as it was
composed of both the 115 design stimuli (determined a priori), as
well as a participant’s newly developed design.
A balanced experimental design separated participants into one

of three experiment conditions: near or far inspirational stimuli,
and control, with 20 participants in each condition. Participants
only saw one experimental condition during the experiment. The
participants in either of the inspirational stimulus conditions (near
or far) were immediately, in real time, provided with an inspira-
tional stimulus for review (under 3 s of computational time).
These stimuli were modulated based on their current design state.
For the near inspirational stimulus condition, the stimulus provided
was the closest stimulus within the design database (115 possible
stimuli) to where they were at that point, based on the largest
cosine similarity from LSA. In the far inspirational stimulus condi-
tion, the furthest stimulus within the database was given (lowest
cosine similarity). Participants in the control condition immediately
transitioned back to ideating after completing the write-up of their
best design from the first ideation session. Finally, after the
second 10-min ideation period, all participants completed a
write-up of their final “best” design solution. LSA was again per-
formed between this final design write-up and the 115 sets of
design stimuli for data analysis purposes. The two different LSA
comparisons between a participant’s midpoint or final design and
the 115 design stimuli allowed for a way to computationally
measure the impact of the design stimuli on problem-solving beha-
vior. By computing the semantic distance between participants’
designs and the fixed stimulus space, a sense of the relative move-
ment of a designer within this design space was extracted.

2.3 Design Database. The design database contained 115 pos-
sible inspirational stimuli adapted from the prior work by Goucher-
Lambert and Cagan [1]. During the prior research study, individuals
generated 386 solutions for the same design problem employed in
the current work. All of the 386 handwritten solutions contained a
mixture of text annotations, text descriptions, and drawings. Three
mechanical engineering PhD students, previously trained to evalu-
ate outcome measures (e.g., novelty, feasibility, and usefulness) of
the same designs, transcribed descriptions of the content for a
random subset of 115 of the 386 design solutions. Each transcrip-
tion contained a minimum of 75 words. Initial pilot testing identi-
fied this word count threshold for each document as being
necessary in order to obtain meaningful differences in LSA compar-
isons. Each of these 115 documents (text descriptions) became one
of the potential inspirational stimuli. In the prior work, all 115 inspi-
rational stimuli were evaluated for their novelty, feasibility, and
usefulness [1]. Consequently, this study utilized these same rating
criteria to make assessments regarding the influence of stimuli on
design solution outcomes.

2.4 Analysis of Design Solutions Generated During the
Cognitive Study. External raters evaluated both the intermediate
designs (D1, after the first 10-min ideation period) and the final
designs (D2, after the second 10-min ideation period) on the follow-
ing outcome measures in order to understand the impact of the com-
putationally selected inspirational stimuli:

(1) Feasibility: rated on an anchored scale from 0 (the technol-
ogy does not exist to create the solution) to 2 (the solution
can be implemented in the manner suggested).

(2) Novelty: rated on an anchored scale from 0 (the concept is
copied from a common and/or pre-existing solution) to 2
(the solution is new and unique). Of note: “novelty” is con-
sidered as the uniqueness of the solution with respect to the
entire solution set.

(3) Usefulness: rated on an anchored scale from 0 (the solution
does not address the prompt and/or consider implicit
problem constraints) to 2 (the solution is helpful beyond
status quo).

(4) Quality: rated subjectively by each rater on a scale from 0
(low) to 2 (high).

Two trained mechanical engineering PhD candidates, both spe-
cializing in design methodology, performed all ratings for solution
characteristics. The intraclass correlation coefficient (ICC) assessed
the consistency between the two design raters using a 25% subsam-
ple of the entire dataset. The ICC values for novelty (0.78), feasibil-
ity (0.65), and usefulness (0.79) were all good or excellent [38]. The
ICC value for quality was 0.51 (moderate) and therefore excluded
from further analysis for being markedly lower than the other
measures.
In addition to the metrics noted, participants also provided self-

ratings regarding the perceived usefulness and relevance of the pro-
vided inspirational stimuli. This information was collected at the
end of the experiment after participants had already written the
description of their final design. Participants provided a self-rating
for each metric ranging from 1 (low) to 5 (high). The goal in col-
lecting these ratings was to investigate whether or not the compu-
tationally determined levels for the inspirational stimuli (near
versus far) aligned with participants’ perceptual notion of these cat-
egories. Participants’ self-ratings were not compared to expert eval-
uations, and therefore, a separate scale with a wider range was
utilized.

2.5 Design Innovation Measure: A Measure to Assess the
Overall Potential of a Design Concept. In addition to assessing
the underlying subdimensions of the designs (e.g., feasibility, use-
fulness), it is important to holistically determine an idea’s overall
potential. To explore the overall “goodness” of the designs in the
current research study, the research team adopted the design inno-
vation measure I for conceptual design assessment. Design innova-
tion I is an encapsulating measure for the overall goodness of a

Fig. 1 Outline of cognitive study
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concept, leveraging more well-defined design attributes. These
include the feasibility (F), usefulness (U), and novelty (N) of a
design, all of which are important for innovation. Accordingly,
this measure was defined as follows:

I = (F · U) + N (1)

To determine the accuracy and robustness of these underlying sub-
dimensions to the overall goodness of concepts, additional formula-
tions of the innovation measure I were explored in relation to
quality (Table 1). Correlations were run between the design innova-
tion measure and quality, not to necessarily equate the two mea-
sures, but to uncover if they follow similar trends.
The variables F,U, and N represent the same subdimensions as in

Eq. (1), and the weights, w1, w2, and w3 are determined from a prin-
cipal component analysis (PCA) run on the rating data. The first for-
mulation placed a greater penalty on feasibility and usefulness as
opposed to novelty (i.e., if either F or U scores a 0, the entire
(F-U) part of that formulation becomes 0). This formulation was
motivated by the correlations discussed in Sec. 1.4 (i.e., feasibility
and usefulness being more significant and robust than novelty).
Both variants two (Eq. (2)) and three (Eq. (3)) assumed equal
weighting for the three subdimensions, and, consequently, equal
importance to innovative potential. However, the second variation
allowed for more resolution in the score range and thus also when
comparing designs. The multiplicative nature of Eq. (3) yielded a
larger penalty for scoring zero on any one of the subdimensions
and introduces a nonlinearity for comparable increases to Eq. (2).

Equation (4) presented a linear combination of the dimensions,
weighted by the importance of each in a reduced dimensional
space obtained by performing PCA. Justification for the chosen for-
mulation (Eq. (1)) is presented later in Sec. 3.

3 Results
The resulting data from the methods outlined in Sec. 2 were ana-

lyzed to determine the impact of the computationally adaptive
stimuli on design solution output. Specifically, the research objec-
tives included: (1) to determine whether the computational
method of design state detection and adaptive interventions via
LSA was feasible (i.e., whether the design state can be measured
in real time), quantifiable (i.e., whether textual similarity can be
used to provide near and far adaptive stimuli that are significantly
different), and perceivable to designers (i.e., can participants distin-
guish the differences between these categorizations), and (2) to
understand the impact of these adaptive stimuli on overall design
outcomes (e.g., based on the design innovation measure score),
and across final design subdimensions, including the novelty, feasi-
bility, and usefulness of solutions.

3.1 Near Versus Far Inspirational Stimuli. The first objec-
tive involved determining the utility and validity in using latent
semantic analysis to monitor a designer’s state. One way to verify
the effectiveness of LSA is through examining whether or not the
computational approach produced distinct categorizations of the
inspirational stimuli provided to the designers. This categorization
was determined using the two separate approaches described in
the following two paragraphs. Figure 2 illustrates examples of a par-
ticipant’s midpoint design description and the stimulus they were
provided with, in both the near and far condition.
The first approach to verify the effectiveness of LSA compared

the average semantic similarity between the stimuli provided in
each experimental condition with the state (midpoint design) of
that participant. From this analysis, a clear separation between the
near and far inspirational stimuli emerged (Fig. 3). Near inspira-
tional stimuli had an average cosine similarity of 0.54, whereas

Table 1 Formulations of design innovation measure, I

I = F · U( ) + N (1)

I = F+ U + N (2)

I = F · U · N (3)

I = w1F+ w2U + w3N (4)

Fig. 2 Example midpoint designs and respective provided stimuli for both the near and far conditions

Journal of Mechanical Design SEPTEMBER 2020, Vol. 142 / 091401-5

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/9/091401/6510081/m
d_142_9_091401.pdf by U

niversity of C
alifornia Library - Berkeley user on 23 July 2020



the far stimuli had a much lower similarity of 0.28 (p≪ 0.01). In
other words, near inspirational stimuli, as intended, were much
closer to the (real-time) calculated state of the designer than the
far stimuli. This verified that the quantitative method for determin-
ing stimulus distance worked appropriately and created substan-
tially different near versus far categories.
The second approach leveraged rating-based data collected at the

end of the experiment from participants. Each participant was asked
how: (1) relevant their provided inspirational stimulus was to their
current design on a 1 (not relevant) to 5 (very relevant) Likert scale
and (2) helpful their provided stimulus was in developing a solution
in response to the problem, again on a scale from 1 (not helpful) to 5
(very helpful). Results indicated that participants perceived near
inspirational stimuli as significantly more relevant to their intermedi-
ate design solutions than the far stimuli (near: μ= 4.225± 0.16 S.E.,
far: μ= 3.35± 0.36 S.E., p< 0.02, d= 0.70). However, participants
only found near-field stimuli to be marginally more helpful during
problem solving compared to the far stimuli (near: μ= 3.5± 0.27
S.E., far: μ= 3± 0.35 S.E., p< 0.13, d= 0.36). These results validate
the computational approach to identify significantly different catego-
rizations of near and far stimuli in response to the current state of
designers. Furthermore, these categorizations match the perceived
distances of the designers. However, designers perceive both condi-
tions of stimuli as equally helpful to problem solving.

3.2 The Impact of Near versus Far Inspirational Stimuli on
Design Problem Solving. The most important goal of this work
involved understanding how these computationally derived stimuli
actually affect design ideation. The overall impact of each stimulus
on a participant’s design output can be measured in a variety of
ways. In this work, the two methods employed were as follows:
(1) the amount of convergence on the stimulus by the designer
and (2) the designer’s relative movement within the design space.
The amount of convergence refers to the semantic similarity

between the final design and the provided stimulus for both the
near and far conditions based upon the LSA cosine similarity
value (Fig. 4(a)). From this analysis, results indicate that partici-
pants provided with semantically near stimuli converged signifi-
cantly closer to those stimuli by the end of the experiment (p≪
0.01, mean cosine similarity values: near: μ= 0.33, far: μ= 0.13).
However, while participants remain more similar to near stimuli
at the end of the experiment, far stimuli may have had a larger
impact on the amount of participants’ “movement” within the
design space. A relative measure of the overall distance was deter-
mined by calculating both the semantic similarities between partic-
ipants’ first design and the stimulus, as well as the final design and
the stimulus, and taking the difference between them (Fig. 4(b)).
The distances were calculated relative to the design stimuli them-
selves, because in order to compare this distance across participants,
there needed to be a common reference point across participants.
The design stimuli served as these common points of reference
within the design space. From this analysis, there was a significant

difference between the two conditions (p< 0.016). Participants pro-
vided with far inspirational stimuli moved a greater distance in the
design space from the beginning to the end of the design ideation
period (near: μ= 0.07, far: μ= 0.12).

3.3 The Impact of Near Versus Far Inspirational Stimuli on
Subdimensions of Final Designs. In order to understand the
impact of different types of computationally derived inspirational
stimuli on subdimensions of final designs (novelty, feasibility,
and usefulness), the expert ratings of these design metrics were
used. As discussed previously, two trained experts evaluated both
the midpoint (D1) and the final design solution (D2) concepts pro-
duced by each participant during the cognitive study. To completely
understand the impact of the stimuli on performance, one needs to
consider where a designer ended up (i.e., their D2) in reference to
where they started prior to an intervention (i.e., theirD1). By analyz-
ing performance in this manner, one can see if providing a near or
far stimulus is beneficial or detrimental to problem solving. Using
these ratings, the difference between the final design and the prior
design is calculated separately for each of the subdimension
metrics (novelty, feasibility, usefulness) and each experimental con-
dition (Fig. 5). Results indicated that there was no significant differ-
ence between the conditions in terms of novelty. In other words,
providing a participant with a near, far, or no stimulus did not sig-
nificantly increase or decrease the rarity of their designs from D1 to
D2. However, intervening with semantically near inspirational
stimuli significantly increased the feasibility of designs compared
to providing no stimulus (p= 0.05, d= 0.5). Additionally, provid-
ing semantically far stimuli significantly decreased the usefulness
of designs (p< 0.01, d= 1.1).

3.4 Exploring Multiple Formulations of the Design
Innovation Measure. Correlations between design quality and
design innovation for the different formulations of the design inno-
vation measure (Table 1) are presented in Table 2. The results in

Fig. 3 The meaning of near and far stimuli: two experimental
conditions were defined using latent semantic analysis, and
the conditions were significantly distinct from one another
(boxes show upper and lower quartiles)

Fig. 4 The impact of inspirational stimuli on final designs. The
left side of Figs. 4(a) and 4(b) conceptually illustrate the distance
measured in the accompanying plots. (a) Participants’ final
design concepts are more similar to the stimulus when provided
a near stimulus; (b) far inspirational stimuli led to more relative
movement (i.e., distance) within the design space.
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Table 2 are separated based upon the four distinct design problems
explored in a prior work [1]. Specifically, these include “A device
to remove the shell from a peanut in areas with no electricity” (elec-
tricity), “A way to minimize accidents from people walking and
texting on a cell phone” (phone), “A device to immobilize a
human joint” (joint), and “A device that disperses a light coating of
a powdered substance over a surface” (surface) [3,39–41]. The
average subdimensional weights found through principal component
analysis (whichwas run separately on the three different design prob-
lems) was as follows: w1= 0.77, w2= 0.54, and w3= 0.37. Overall,
the chosen formulation of Eq. (1) shows the highest correlation
between innovation and quality on all four design problems. Along
with its simplicity, Eq. (1) is the chosen design innovation measure:

I = (F · U) + N (1)

However, it should be noted that all formulations exhibit fairly strong
correlations, which supports both the accuracy and robustness of the
three chosen subdimensions. Furthermore, when taken together, they
are representative of the overall goodness of designs and possess
merit as a useful design measure, without the burden of the less con-
sistent quality evaluation.

3.5 The Impact of Inspirational Stimuli on Overall Final
Design Innovation. An alternate method to examine the impact
of the inspirational stimuli is to examine whether or not a specific
intervention led to an overall better final design (instead of focusing
on subdimensions as described previously). Recall that one of the
design metrics originally rated by the external evaluators was the
quality of designs. However, the ICC value for quality was much
lower than the other design metrics ( feasibility: ICC= 0.65,
novelty: ICC= 0.78 usefulness: ICC= 0.79, quality: ICC= 0.51).
Consequently, due to this inconsistency between raters, quality
cannot serve as a consistent measure of impact of the inspirational
stimuli. Instead, the design innovation measure I was used to holis-
tically encapsulate the goodness of design concepts.
Utilizing the design innovation measure, the overall innovative

potential of the design stimuli (I(DS)) and both participants’ interme-
diate and final designs (I(D1) and I(D2)), respectively, are calculated
(Eq. (1)). Similar to the analysis presented previously (Fig. 5), perfor-
mancewas assessed by examining the difference in innovation scores

betweenD1 andD2.Again, the results support a similar finding, with
no significant effect in the change of innovation scores (either
increase or decrease) in relation to the stimulus condition.
However, it is not completely accurate to only consider whether a

stimulus is near or far when measuring its impact on problem
solving. One limitation to the above analysis is that it does not con-
sider the quality of the provided stimuli. For example, if a partici-
pant received a poor quality stimulus, regardless of its distance,
one would not necessarily expect their final design to improve.
Because quality is hard to consistently assess, the design innovation
measure is again used to represent the overall goodness of stimuli.
Here, the different stimuli that designers received during the exper-
iment varied significantly in regard to this measure. Consequently, a
follow-up analysis was performed, which considers the innovation
score of the stimuli:

Corr ([I(D2) − I(D1)], [I(Ds) − I(D1)] ) (5)

Equation (5) measures the correlation between a participant’s
final design innovation score (I(D2)) and the innovation score of
the received stimulus (I(DS)), both in reference to their intermediate
design solution (I(D1)). From this analysis (Fig. 6), it can be seen
that an inspirational stimulus with a higher innovation score, rela-
tive to the intermediate design, was significantly correlated with a
better final design (i.e., an increase in I from D1 to D2; r(38)=
0.67, p< 0.001). To ensure this correlation was independent of
the bias introduced via the transformation in Eq. (5), an additional
analysis was performed. First, 1000 random samples for each of
I(D1), I(D2), and I(DS) were drawn from a uniform distribution
and fed through Eq. (5) (rbias). Next, 1000 tuple samples (each
tuple set containing an I(D1), I(D2), and I(DS)) were taken from
the experimental data (with replacement) and fed through Eq. (5)
(rexp). A Fisher z-transformation showed that the empirically
derived correlation value (rexp) was stronger and significantly differ-
ent from rbias (p≪ 0.001), revealing the independence of the result
from any introduced bias. Using the aforementioned distribution to
determine rexp, the following correlation value and 95% confidence
interval were obtained: rexp= 0.67, 95% CI [0.63, 0.70].
The positive correlation between the innovation score of the sti-

mulus and final design is true, regardless of whether a participant
received a near or far stimulus. Conversely, a participant that
received a less innovative stimulus was more likely to produce a
less innovative final design. These results provide an interesting,
tangential perspective. When intervening during problem solving
via inspirational stimuli, adapting stimuli based on relative quality
(as measured here by design innovation, I ) highly correlates with
final design outcomes.

4 Discussion
Overall, this work provides an initial step toward real-time inter-

vention during engineering design problem solving. Unlike other

Fig. 5 Mean difference between final (D2) and intermediate (D1)
designs for three metrics, separated by experimental condition

Table 2 Correlations between quality and four formulations of
the design innovation measure

Equation
(1) (2) (3) (4)Problem

Electricity 0.60 0.56 0.46 0.57
Phone 0.80 0.74 0.71 0.73
Joint 0.72 0.58 0.044 0.71
Surface 0.64 0.60 0.40 0.62

Fig. 6 The overall innovativeness of the provided inspirational
stimuli is predictive of the final design outcome

Journal of Mechanical Design SEPTEMBER 2020, Vol. 142 / 091401-7

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/9/091401/6510081/m
d_142_9_091401.pdf by U

niversity of C
alifornia Library - Berkeley user on 23 July 2020



work that provides inspirational stimuli for designers a priori, the
methods introduced here respond dynamically to an evolving
state of participants’ design output. These stimuli are related
design solutions sourced from a pre-existing database; they are
intended to increase designers’ ability to recall useful ideas from
memory that may aid in their ability to generate solutions with
increased positive characteristics (e.g., feasibility and novelty; see
discussion in Sec. 1). In this work, interventions were provided
midway through problem solving and adapted to designers’
current solution output. The adapted stimuli, determined using
LSA, represented solutions either semantically near or semantically
far from designers’ present solutions. Thus, these stimuli occupy
positions in the semantic design space either close to or far from
the designers’ relative location.
The results from this study demonstrate the applicability of

semantic similarity measures, such as LSA, for identifying stimuli
based on the current state of a designer. When the semantically
near and far stimuli are extracted from the design space, two distinct
and significantly different (in terms of semantic similarity) clusters
emerged. This supports the notion that computationally defined
near (or far) stimuli are, indeed, near and far. Furthermore, it pro-
vides evidence that the design space of stimuli contained designs
distinct enough from one another. If the design space did not
contain sufficiently distinct designs, it would not have been appro-
priate to categorize the designs as near and far. Additionally, results
from the qualitative analyses showed that participants in each con-
dition perceived the stimulus provided to them as equally helpful.
Participants self-rated near stimuli as significantly more relevant
to the design problem compared to far stimuli, but not significantly
more helpful. Therefore, participants perceived the inspirational
stimuli as equally helpful, but not significantly different in terms
of their relevance.
While this work applied LSA to adaptively select inspirational

stimuli, there are other possible approaches. LSA bases its com-
parisons on semantic similarity; as such, this method can only
handle and compare textual outputs of designers. Other topic
modeling methods to handle text-based comparisons are probabi-
listic latent semantic analysis and latent Dirichlet allocation
[42,43]. The work presented in this paper demonstrates LSA’s
ability to quickly find relevant stimuli for use by designers.
However, LSA should be compared to other approaches for
adaptively finding textual stimuli for designers. Furthermore, the-
oretically, there is nothing preventing similar vector-based simi-
larity comparisons from being made between images or other
modalities of stimuli. Future work should also consider additional
modalities of inspirational stimuli and ways to logically compare
similarities between two or more different modalities other than
text (i.e., mapping conceptually near and far between sets of
images).
After demonstrating the distinctiveness of both near and far inspi-

rational stimuli, this study then explored their impact on design out-
comes. In this work, evaluations of midpoint and final design
solutions were used to assess the performance of the designers. Spe-
cifically, external raters evaluated the feasibility, usefulness, and
novelty of each design. Results showed that participants provided
with no stimuli had significantly less feasible design solutions,
while those provided with far stimuli had significantly less useful
design solutions. From this perspective, participants provided
with near stimuli benefitted more from the intervention than those
provided with the far stimuli. This corroborates previous findings
from the authors, which suggests near inspirational stimuli may
be more helpful than far inspirational stimuli [1]. In contrast to
the far and no stimulus conditions, the designs in the near condition
were not negatively affected in their feasibility or usefulness. None-
theless, an important piece to the puzzle is still missing: the overall
goodness of the stimuli themselves.
This work utilizes a measure to capture the overall “goodness” of

solutions to assess design concepts. The motivation for this measure
stems from the ambiguity in a common design metric prevalent
throughout the engineering design field: quality. Many works

utilize this metric when assessing design artifacts, yet its holistic ter-
minology and the variations in its definition sometimes cloud the
dimensions underlying its true meaning. For this reason, this
work explores the use of a different measure. The literature
review supports the concepts of feasibility and usefulness when
considering the overall goodness of a design. Both are included
in our newly defined design innovation measure. Novelty, while
not as common of a subdimension for overall goodness, adds the
element of uniqueness to the measure.
In this work, different forms of the innovation measure are pre-

sented, motivated, and analyzed. Correlations with quality corrobo-
rate the underlying dimensions and the specific formulation
proposed in this work (i.e., Eq. (1)) [27,44]. These four specific for-
mulations were considered to explore a general subset of variations
on the subdimensions and understand the sensitivity of the formu-
lation to these variations. Future work should further investigate
the stability and robustness of the proposed formulation with addi-
tional datasets.
Participants’midpoint and final solutions, as well as the provided

inspirational stimulus, were analyzed using the newly defined
design innovation measure. A similar analysis was carried out as
described previously, but this time looking at the change in innova-
tion scores between final designs and midpoint designs. Again, no
significant change existed between conditions (near, far, or no sti-
mulus). This suggests that providing an adaptive stimulus, either
semantically near or semantically far, does not improve the innova-
tion potential of solutions. In contrast, the innovation score of the
provided stimulus did impact designers’ outcomes: when provided
with an inspirational stimulus with a relatively higher innovation
score, designers were more likely to produce a more innovative
final design, regardless of inspirational stimulus condition.
Previous research has proposed a “sweet spot” for analogical

stimuli, representing an analogy that lies somewhere in between
the near and far fields and yields the most benefit for positive
design outcomes [5]. Yet, the stimuli in this experiment occupy
the far ends of the spectrum, as opposed to this sweet spot. With
the analytic nature of LSA, perhaps a more precise designation of
this sweet spot can be identified in order to understand where
between the near and far fields this sweet spot truly lies. Based
on the present study, it may be important to not only consider the
distance of the provided stimulus, but also its relative innovative
potential.
While the stimulus conditions did not outperform the control con-

dition on all dimensions of design metric outcomes, one explanation
for this underperformance is the interruption endured during
problem solving. Prior research is inconclusive regarding whether
brief interruptions hurt or help problem solvers. For example,
work by Gero et al. demonstrated that interruptions during design
ideation are hurtful due to a cognitive shift from primary to second-
ary tasks [45]. Other works support this claim for problem solving
in general and have considered ways to mitigate the effects of dis-
ruptions [46–48]. Conversely, work by Sio et al. found that inter-
ruptions are beneficial [49]. Despite this, much of the previous
research on the effects of design stimuli on design outcomes does
not specifically study timing as a variable. Research from Tseng
et al. found that stimuli are most helpful after the development of
an open goal [15]. One thought is that the time when stimuli are typ-
ically provided during design studies may not occur during a period
of deep problem solving (e.g., at the beginning of an experiment)
and therefore do not cause this cognitive shift to occur. The
timing of the stimulus intervention is not specifically studied in
this work; however, it is an area in need of future investigation.
Another factor that may have impacted the inspirational stimuli

conditions is team versus individual efforts. Providing example
solutions halfway through problem solving may be analogous to
two members on a team interacting or sharing ideas with each
other at a set interval (i.e., independent work on the same design
challenge with one opportunity to exchange current ideas/solu-
tions). Because of deficiencies in group dynamics, nominal teams
(teams composed of individuals who do not collaborate during
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problem solving) have been shown to outperform teams in a variety
of problem domains including brainstorming, conceptual design,
configuration design, and verbalization tasks [50–53]. Under this
theory, designers that did not receive an example solution should
perform better because they did not collaborate with the computer
team member (nominal teams). Those that did receive an example
solution are hindered because of the interaction with the computer.
To fully corroborate this theory, future work is needed to study this
type of human–computer interaction of problem solving in “hybrid
team” (human–computer) environments. The computational frame-
work in this work provides promise for an effective design tool of
the future. Forthcoming research can address how and when to
intervene during design problem solving. More specifically, these
open questions involve which modalities of interventions are best
for designers, and when during the problem-solving process is
most effective for them to be applied.

5 Conclusion
This work utilized LSA to adaptively select relevant inspirational

stimuli to aid designers during a cognitive study. Sixty designers
were split into three conditions: two conditions that modulated
the distance of the provided inspirational stimulus and a control
condition in which no stimulus was provided. The stimuli were
selected based on the LSA comparison between the current status
of the designers’ output and a database of design solutions. One
key contribution of this work is the adaptive determination of
which stimulus to provide to a designer based on their current
output of design activity. Results indicate that LSA is a viable tech-
nique to make interventions with inspirational design stimuli. Using
a newly defined measure of design innovation, this work also inves-
tigates the impact of the inspirational stimuli intervention and
design output. The overall innovativeness of the provided stimuli
significantly correlated with the overall innovativeness of the
designers’ final design solutions. In fact, the overall innovativeness
of a stimulus had a greater impact on a designer’s output than the
relative distance of the stimulus. This highlights the need to
provide stimuli to designers at specific distances relative to the solu-
tion space, while also assessing the innovative potential of the inspi-
rational stimulus. While more work is needed to automate the
process of providing designers with positively impactful inspira-
tional stimuli, the real-time computational approach presented in
this work is a critical step toward realizing this goal.
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