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Abstract

The study presented AQ3in this paper applies hidden Markov modeling (HMM) to uncover the
recurring patterns within a neural activation dataset collected while designers engaged in a
design concept generation task. HMM uses a probabilistic approach that describes data
(here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior
assumptions on the fMRI data’s temporal and spatial properties, HMM enables an automatic
inference on states in neurocognitive activation data that are highly likely to occur in concept
generation. The states with a higher likelihood of occupancy show more activation in the brain
regions from the executive control network, the default mode network, and the middle tem-
poral cortex. Different activation patterns and transfers are associated with these states, linking
to varying cognitive functions, for example, semantic processing, memory retrieval, executive
control, and visual processing, that characterize possible transitions in cognition related to
concept generation. HMM offers new insights into cognitive dynamics in design by uncover-
ing the temporal and spatial patterns in neurocognition related to concept generation. Future
research can explore new avenues of data analysis methods to investigate design neurocogni-
tion and provide a more detailed description of cognitive dynamics in design.

Introduction

Design cognition has been a significant area of interest in design research. Traditional
approaches to studying design cognition typically relies upon subjective and qualitative tech-
niques. Researchers need to infer, or participants need to report, the internal processes in the
designer’s mind that align with design behavior through observations, questionnaires, or inter-
views (Chiu and Shu, 2011; Dinar et al., 2015). Such approaches allow the research to be per-
formed in-situ or in controlled experiments. However, these approaches are limited by their
intrinsic subjective nature and extensive qualitative data processing requirements (Chiu and
Shu, 2011; Hay et al., 2017). To overcome some of these limitations and combine more quan-
titative methodologies in design cognition research, an emerging research area in the design
research community, often referred to as “design neurocognition”, is seeking to apply tech-
niques from cognitive neuroscience to measure brain activity related to design and advance
knowledge of design cognition (Liu et al., 2018; Goucher-Lambert et al., 2019; Hu and
Shealy, 2019; Gero and Milovanovic, 2020; Vieira et al., 2020; Zhao et al., 2020; Balters
et al., 2022; Hay et al., 2022).

Functional magnetic resonance imaging (fMRI) is one of the neuroimaging techniques
used to measure design neurocognition. fMRI offers a more direct understanding on the
whole-brain neurocognitive processes that correlate with design behavior and support design
activity. Classical analysis of fMRI data usually focuses on a pre-specified “event” (e.g., event-
based design matrix) or time points (e.g., specific time window or sliding window). Significant
assumptions are required in the pre-specification relating temporal and spatial information to
uncover meaningful links between brain activity and participant behavior in response to exper-
imental tasks. Additionally, this type of analysis leads to a loss of information from the entire
dataset, especially the dynamics in the process. In this work, an unsupervised machine learn-
ing technique, hidden Markov modeling (HMM), is used to automatically infer states and their
spatial and temporal patterns in underlying fMRI data related to design cognition without
prior specifications on event-based design matrix or time window for fMRI data analysis.

HMM is a generative model that describes data in a temporal sequence of a finite number
of discrete states. Prior research in both design and neuroscience domains has demonstrated
that using HMM provides valuable insights into temporal patterns in varying types of data, for
example, a short-timescale sequence in design behavior data (McComb et al., 2016, 2017a,
2017b), and dynamic patterns (states) of neural activation in large-scale resting-state fMRI
data (Vidaurre et al., 2017, 2018). A prior study by the authors also used HMMs to extract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060423000021
https://doi.org/10.1017/S0890060423000021
mailto:mohu@berkeley.edu
https://orcid.org/0000-0001-6622-0880
https://orcid.org/0000-0003-0850-9197


distinct states in the fMRI data and find differences in neurocog-
nitive patterns between participants with different performance
levels (Goucher-Lambert and McComb, 2019). In that prior
work, participants were assigned to high- and low-performing
groups based on idea fluency (i.e., the number of concepts gener-
ated in a fixed time). Half of the designers with higher design flu-
ency were assigned to the high-performing group, while the other
half were assigned to the low-performing group. Significant dif-
ferences were found between these two groups in the number of
solutions generated in every 15-second block. Differences were
also observed in the state occupancy between the high- and low-
performing designers (Goucher-Lambert and McComb, 2019).

However, the neural activation patterns associated with the
distinct states identified in the prior work (Goucher-Lambert
and McComb, 2019) are still unknown. There is a lack of under-
standing of the specific brain regions involved in each neurocog-
nitive pattern plus corresponding cognitive functions. The current
work builds on (Goucher-Lambert and McComb, 2019) by inves-
tigating the patterns of neural activity, linking them to physical
locations in the brain, and inferring the cognitive functions asso-
ciated with each of the 12 states discovered in prior work. The
findings suggest that the states extracted from fMRI data using
HMM are linked to varying brain regions and associated with dif-
ferent cognitive functions that provide meaningful explanations
for different performances in concept generation.

Background

This work employs neuroscience experiments (i.e., fMRI) and a
machine learning technique (i.e., HMM) to explore dynamic neu-
rocognitive patterns related to design concept generation. This
section first introduces design research that applied fMRI to
understand brain activities during design and concept generation.
Then, critical brain regions and large-scale networks associated
with the concept generation process are summarized. This section
also discusses HMM and its application to neuroimaging data and
design research.

fMRI and design neurocognition

A growing body of research is using neuroimaging techniques to
investigate brain activities relevant to design in multiple phases,
for example, design concept generation (Fu et al., 2019;
Goucher-Lambert et al., 2019; Hay et al., 2019; Hu et al., 2019,
2021; Shealy et al., 2020), design decision-making
(Goucher-Lambert et al., 2017b; Hu and Shealy, 2020, 2022),
and open design or problem-solving (Zhao et al., 2020; Vieira
et al., 2022b). A variety of neuroimaging techniques have been
employed to measure design neurocognition, such as electroence-
phalography (EEG), functional near-infrared spectroscopy
(fNIRS), and functional magnetic resonance (fMRI). EEG and
fNIRS are portable in data collection but limited in spatial resolu-
tion. EEG cannot pinpoint the specific brain regions where the
electrical signal comes from (Burle et al., 2015). fNIRS usually
has a limited number of light sensors and a shallow penetration
depth, so it is restricted to cover only the outer cortex
(Quaresima and Ferrari, 2019). In contrast, fMRI provides excel-
lent spatial resolution and rich information on brain activity
through whole-brain scanning. However, a limited number of
fMRI studies have investigated design or concept generation con-
sidering the lack of mobility and high cost of operation in an
fMRI experiment (Hay et al., 2022).

One of the first fMRI study related to design was performed by
Goel and Grafman (2000) which explored the difference between
architects with and without lesion to the prefrontal cortex, and
found that the right dorsolateral prefrontal cortex was necessary
for ill-structured representation and computation in room space
design. Another early study that adopted fMRI to investigate
design was by Alexiou et al. (2009). This study found distinguish-
ing cognitive functions and brain networks when performing
architectural room layout tasks in two forms: (1) ill-defined and
open design and (2) well-defined and constrained
problem-solving. The study also identified that higher activation
in the right dorsolateral prefrontal cortex (PFC) was associated
more with open design than problem-solving (Alexiou et al.,
2009), which was confirmed by a recent EEG study that extended
Alexiou et al. (2009)’s work by investigating the open design tasks
at three distinct stages and found increased activation in ideation
stages in alpha 2 and beta 3 band in the PFC (Vieira et al., 2022b).
Another two fMRI studies related to design decision-making
include Sylcott et al. (2013) and Goucher-Lambert et al. (2017 AQ2AQ4)
that used fMRI to understand product preference judgment
when users made trade-offs between different design variables
(e.g., form, function, and environmental impact) and found var-
ied brain regions associated with each of the decision attributes.

Design concept generation, or design ideation, is arguably the
most critical phase for injecting creative inspiration and shaping
the creativity of subsequent design phases (Cross, 2001; Yang,
2009; Hay et al., 2019). The design research community is increas-
ingly interested in using neuroimaging methods to understand
performance (e.g., quantity, quality, creativity, etc.) and cognitive
processes related to design concept generation. Ellamil et al.
(2012) used fMRI to investigate the cognitive difference between
creative generation and evaluation. The results found that the
medial temporal lobe was central to the generation of novel
ideas while evaluation mainly involved the executive regions for
affective and visceropathies evaluative process. Hay et al. (2019)
compared the neurocognitive activation during concept genera-
tion between open-ended and constrained design ideation tasks
but found no significant difference between the two conditions.
However, they did identify increased activation in the left cingu-
late gyrus and right superior temporal gyrus during ideation. Fu
et al. (2019) studied the neurocognitive patterns associated with
design fixation in concept generation. They found increased acti-
vation in areas associated with visuospatial processing (e.g., left
middle occipital gyrus and right superior parietal lobule regions).
Goucher-Lambert et al. (2019) investigated design concept gen-
eration with and without the support of inspirational stimuli
(e.g., text-based analogies) and identified two separate patterns
of brain activation: one is associated with the successful applica-
tion of inspirational stimuli to generate design solutions via
insight in the temporal and parietal lobes, and the other is the
currently unsuccessful and external search for insights in the pri-
mary visual processing-related brain regions.

Important brain regions and networks for ideation and
insights

Even though only a limited number of fMRI studies have been
performed to understand design concept generation (Alexiou
et al., 2009; Ellamil et al., 2012; Sylcott et al., 2013;
Goucher-Lambert et al., 2017b; Fu et al., 2019; Hay et al.,
2019), ideation (i.e., concept generation) and insights are widely
studied in the neuroscience literature that used fMRI
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(Blumenfeld et al., 2011; Benedek et al., 2014; Green et al., 2015;
Beaty et al., 2016; Heinonen et al., 2016; Shen et al., 2018;
Benedek and Fink, 2019) or design neurocognition studies that
used other neuroimaging techniques (Shealy and Gero, 2019;
Hu et al., 2021; Vieira et al., 2022a, 2022b). The process of gen-
erating insights and new ideas requires complex cognitive pro-
cesses of attention, cognitive control, and memory (Fink et al.,
2007; Benedek et al., 2018; Benedek and Fink, 2019). Some
brain regions and large-scale brain networks have been shown
to play critical roles in supporting ideation and insight. Prior
research highlights activity within the brain regions from the
default mode network (DMN) and executive control network
(ECN) as being particularly influential (Ellamil et al., 2012;
Beaty et al., 2016; Heinonen et al., 2016). DMN–ECN interactions
also occur during cognitive tasks that involve generating and eval-
uating creative ideas (Ellamil et al., 2012; Beaty et al., 2016), and
the dynamic transitions between default and control network are
facilitated by the salience network (Uddin, 2015; Beaty et al.,
2018).

DMN predominantly includes the medial prefrontal cortex
(mPFC), the posterior cingulate cortex (PCC), and the medial
and inferior parietal cortex. DMN activity may engage in sponta-
neous and associative processes, such as self-generated and
internal-directed thought during mind wandering, mental
stimulation, and episodic memory retrieval (Beaty et al., 2020).
Such self-generated and internal-directed cognition contributes
to concept generation by deriving useful information from long-
term memory (Beaty et al., 2016, 2020). Prior neuroimaging stud-
ies found strong activation within the DMN related to creative
processing by analogy (Beaty et al., 2016, 2020; Benedek and
Fink, 2019). For instance, the mPFC shows higher activation dur-
ing the novel generation of words with analogies (Green et al.,
2015). Likewise, activation in the PCC is associated with creative
idea generation through metaphor production (Benedek et al.,
2014).

The ECN mainly comprises the dorsolateral prefrontal cortex
(DLPFC) and the anterior cingulate cortex (ACC). The ECN
has been linked to the support of internal representation, working
memory, and relational integrations in creative cognition litera-
ture (Gilhooly et al., 2007; Beaty et al., 2016; Heinonen et al.,
2016). The PFC, especially the dorsolateral PFC, is heavily
involved in encoding of relational information and executive con-
trol when retrieving information from working memory (Green
et al., 2010; Blumenfeld et al., 2011). Working memory is neces-
sary to focus attention on and maintain executive control over ele-
ments related to concept generation (De Dreu et al., 2012). A
prior study found activation in the dorsolateral PFC, especially
in the left hemisphere, is dominant in concept generation
(Shealy and Gero, 2019). The ACC activity is also a consistent
finding in creative analogical thinking tasks for executive pro-
cesses of response conflict and response selection between differ-
ent ideas (Green et al., 2015).

Insights also rely on memory. The temporal cortex, a brain
region in charge of semantic and episodic memory, is often
involved in creative insight (Shen et al., 2017). Temporal regions,
especially the medial temporal lobe, have been closely linked to
the function of breaking mental sets and establishing remote
and novel associations, which then can trigger insight experience
(Zhao et al., 2013; Shen et al., 2018). Prior design neurocognition
research also found higher activation in the temporal regions dur-
ing creative ideation (Ellamil et al., 2012; Hay et al., 2019) and
concept generation with inspirational stimuli (Goucher-Lambert

et al., 2019). Other brain regions, such as the primary visual
processing-related brain region in the occipital lobe, show activa-
tion in creative processing as well. While it is usually connected to
participants being unable to solve problems with insights
(Kounios et al., 2006), design fixation without new ideas (Fu
et al., 2019), or a continued external search without insights
(Goucher-Lambert et al., 2019) in design cognition.

Application of HMM in neuroscience research

Previous research in design neurocognition (mentioned in
Sections “fMRI and design neurocognition" and "Important
brain regions and networks for ideation and insights”) provides
valuable information related to concept generation. However,
most studies followed classical fMRI data analysis methods that
depend on significant assumptions. The temporal and spatial
information regarding the fMRI data needs to be assumed before-
hand to extract meaningful statistics linking brain activity to par-
ticipant behavior in response to tasks (e.g., a design matrix that
specifies time of event in general linear model methods). These
analysis techniques are locked to specific time points (e.g., when
the neural process of interest occurs) and do not uncover connec-
tions between brain regions that may be correlated in space and
time. These methods might be limited when the neural process
of interest (e.g., ideation) is complex and not easy to pre-specify.
In addition, the dynamics in the fMRI data are hard to capture
when using classical methods. To catch the dynamic information
in design cognition without making assumptions on the structure
of the data, HMM is adopted in this work to automatically infer
states in fMRI data related to design cognition without prior
assumptions.

HMM uses a probabilistic approach to describe the data as a
dynamic sequence of discrete states with a flexible definition of
distribution (e.g., Gaussian, Wishart, or any other family of the
probability of distribution). HMM can model time-series fMRI
data in a temporal structure of the inferred brain states, each
with specific spatial activation patterns. Applying HMM to
fMRI data assumes that (1) fMRI data can be reasonably modeled
in a discrete number of states with Markovian dynamics. (2) At
each point in time, these states are reflective in the form of prob-
abilities, and only one active state is assigned based on probability.
(3) The current state being occupied is only dependent on the last
state, not the previous history of state activation (Vidaurre et al.,
2017; Vidaurre, 2021). The model allows for the analysis of how
likely a state being occupied at a particular time point, how much
time is being spent in each state, and how certain a state is tran-
sitioning to another state. Such recurrent patterns and dynamics
in brain activation data throughout entire datasets can be uncov-
ered using HMM. It provides a more reliable estimation of brain
activation patterns and overcomes the insufficiency when a short
time window is pre-specified for classical statistical analysis
(Vidaurre et al., 2018). Another benefit is that HMM enables
the detection of the transient occurrence of a state and switches
between the states when the visits of the states are relatively
short in time, which is usually missed in classic analysis methods
(Vidaurre et al., 2018). Based on the flexibility and analysis power,
HMM has been applied to fMRI data (Anderson et al., 2010,
2016; Anderson, 2012; Suk et al., 2016; Baldassano et al., 2017;
Vidaurre et al., 2017, 2018; van der Meer et al., 2020 AQ3AQ5; Vidaurre,
2021).

The earliest fMRI studies that adopted HMM were by
Anderson et al. (2010, 2016) and Anderson (2012). This study
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used HMM to distinguish the period of time and mental states
(e.g., encoding, planning, solving, and responding) when students
engaged in mathematical problem-solving (Anderson et al.,
2016). Baldassano et al. (2017) applied HMM to fMRI data and
detected event boundaries during narrative perception through
shift between brain activation states without stimulus annotations.
HMM was also applied to decode brain states in resting-state
fMRI data for clinical application (Suk et al., 2016). Vidaurre
et al. (2017) used HMM with the large datasets (resting-state
fMRI data from 820 subjects) in the Human Connectome
Project (HCP) to achieve richer and more robust conclusions
about the dynamic nature of brain functional connectivity.
Here, the results demonstrated that activation data can be well
represented in discrete states which are hierarchically organized
in time, and the dynamic transitions between these states are
far from random. More recently, van der Meer et al. (2020)
applied HMM to fMRI data collected during movie viewing.
The HMM captured a sequence of well-defined functional states
plus dynamic transitions that were temporally aligned to specific
features of the movie in the study. In summary, previous research
has demonstrated HMM as a viable approach to represent brain
activation data in a variety of contexts for which information
regarding recurrent patterns of activity is of interest. The goal
of the current work in this paper is to uncover brain activation
patterns and cognitive functions that emerge and transit between
different states during design concept generation.

Application of HMM in design research

Another critical motivation for applying HMM to neuroimaging
data on design ideation comes from prior work that has demon-
strated HMM as a valuable tool for capturing patterns and
sequence in design behavior data. HMM was adopted by the
authors in prior work to represent and stimulate sequential pat-
terns of design behaviors when designing for additive manufac-
turing (Mehta et al., 2020) and solving configuration problems,
including the design of truss structures or internet-connected
home cooling systems (McComb et al., 2016, 2017a, 2017b;
Brownell et al., 2021). Design is a dynamic process in a sequence
of stages or activities (Howard et al., 2008; Gericke and Blessing,
2011; Cramer-Petersen et al., 2019). In engineering design, the
capacity of designers to learn and employ sequences (temporal
patterns of activity) has long been of interest to design researchers
(Gericke and Blessing, 2011; McComb et al., 2016, 2017b;
Cramer-Petersen et al., 2019). Prior research explored sequence
in design at different levels of abstraction (McComb et al.,
2016). The level of abstraction refers to the sequencing levels in
design based on the ordering of design stages (more abstract
and generalized), specific tasks, or design operations (less abstract
and more detailed-specific). For example, the higher level of
abstraction as design stages that tend to occur at the longer time-
scales (e.g., customer needs assessment, conceptual design,
detailed design) (Atman et al., 2007; Goldschmidt and Rodgers,
2013), and a lower degree of abstract at a shorter timescale as spe-
cific design tasks and operations (e.g., adding a member, adding a
joint, resizing a member, etc., in the design of truss structures)
(Rogers, 1996; Sen et al., 2010; Brownell et al., 2021).
Sequencing at short timescales and low abstraction directly impact
design proficiency (Brownell et al., 2021) or performance
(McComb et al., 2016, 2017b). However, this level of abstraction
and timescales has not well studied in the engineering design lit-
erature (McComb et al., 2017a). The current work presented in

this paper aims to fill this gap by exploring the states in neurocog-
nition as imaged through fMRI. The spatial and temporal patterns
are investigated from a neurocognitive aspect. The results identify
and assess a short-timescale sequence of different states in neuro-
cognition that has not previously been examined in engineering
design research. Here, sequence refers to the temporal patterns
and transitions in neurocognitive activation and functions. This
intersection of neuroimaging, design concept generation, and
analysis using HMM provides a novel contribution to design cog-
nition literature.

Methods

This study investigates the patterns of neural activation and pos-
sible cognitive functions associated with each of the 12 states
related to design concept generation identified in prior work
(Goucher-Lambert and McComb, 2019). The fMRI datasets,
data processing procedures, and HMM are introduced in
Sections “Design concept generation task and fMRI experiment",
"fMRI data collection, pre-processing, and brain parcellations"
and "Hidden Markov modeling”, respectively. Section
“Localizing the brain activation in each HMM state” describes
the method for localizing the brain activations and inferring pos-
sible cognitive functions associated with each state.

Design concept generation task and fMRI experiment

This study used the fMRI dataset collected in a prior design by
Goucher-Lambert et al. (2019) in which participants engaged in
concept generation tasks with or without the assistance of inspira-
tional stimuli. Inspirational stimuli are examples provided to
designers to enhance creativity and innovation during conceptual
ideation (Goucher-Lambert and Cagan, 2019). These stimuli were
sourced in prior work by extracting common and uncommon
words from crowdsourced solutions using a text-mining tech-
nique. Their distance to the problem (near or far) was determined
based on word frequency and bidirectional path length textual
similarity (Goucher-Lambert and Cagan, 2019).

In the fMRI experiment, designers (i.e., engineering and
design students) completed the 12 design problems and devel-
oped as many solutions as possible in an MRI scanner. For
each design problem, designers were given a total of 2 min, sepa-
rated into two 60-s blocks, and asked to develop as many solu-
tions as possible in each block. From the beginning of each
block, all designers were presented with word sets drawn from
inspirational stimuli (inspirational stimuli condition, near, or far
stimuli) or containing words from the design problem without
inspirational stimuli (control condition). A total of five inspira-
tional stimuli were displayed: three words displayed at the same
time (Word Set 1) from the beginning of the first block and the
remaining two words displayed simultaneously (Word Set 2)
from the beginning of the second block. The purpose is to
make the presentation of inspirational stimuli alternate through-
out the task and provide new stimuli if participants had exhausted
their use of the inspirational stimuli presented in the first block.
An example problem and inspirational stimuli can be found in
Figure 1. Each of the 12 design problems had a unique set of
inspirational stimuli for all three conditions (near, far, and con-
trol). The experiment conditions were counter-balanced to pro-
vide an even distribution of problem-condition pairs for each
designer. Figure 1 shows the experiment process. Only fMRI
images collected during the whole session of the design concept
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generation periods (highlighted in Figure 1, without any specifica-
tion on the time points of Word Set 1 or Word Set 2) were
included in the HMM. The full details of the design problems,
inspirational stimuli, and fMRI experiment can be found in
Sections “Important brain regions and networks for ideation
and insights” in Goucher-Lambert et al. (2019).

fMRI data collection, pre-processing, and brain parcellations

A total of 21 engineering students were recruited and completed
the fMRI experiment. Figure 2 illustrates the steps for the fMRI
data collection, pre-processing, and preparation for HMM train-
ing. fMRI data collection and pre-processing were performed in
the prior work. Detailed information on participants, fMRI equip-
ment, data acquisition, and data pre-processing (Steps A and B in
Fig. 2) can be found in Sections “Application of HMM in neu-
roscience research" and "Application of HMM in design research”
in Goucher-Lambert et al. (2019). Data processing in the current
work includes Steps C, D, and E in Figure 2.

A multi-stage process was applied to prepare the pre-processed
fMRI time-series data into lower-order spatial representations for
the purpose of more rapid HMM training, illustrated in Figure 2c,
d. The first step was down-sampling each fMRI image from the
resolution of 54 × 64 × 50 (in a total of 172,800) voxels to 27 ×
32 × 25 (in a total of 21,600) voxels to avoid overfitting
(Anderson, 2012). Then, the processing pipeline and techniques
used by Smith et al. (2014) and Vidaurre et al. (2017, 2018)
were applied in this study to prepare HMM inputs. Principal
component analysis (PCA) was used to reduce fMRI data to its
dominant constituents with a dimension of 50 parameters for
each subject. The last step was to perform independent compo-
nent analysis (ICA) with pre-specified constraints (i.e., parcella-
tion in Fig. 2d). The max-kurtosis ICA algorithm was applied
to project the data into a 50-dimension time-series using the

50-parcellation template from the Human Connectome Project
(HCP). The whole-brain fMRI data was parcellated into the acti-
vation data within 50 functional distinct areas using the pre-
validated spatial maps (Medolic_IC) from HCP, which include
spatial information of the 50 spatially independent components
in the brain (Beckmann, 2012). Previous researchers used the
large-scale resting-state fMRI data in the HCP and provided
this data-driven functional parcellation of human brains with
high stability (Beckmann and Smith, 2004; Smith et al., 2014,
2015). A final standardization was performed to the
50-dimension time-series fMRI data aggregated among all partic-
ipants so that the training data for the following HMM have a
mean of 0 and a standard deviation of 1.

Hidden Markov modeling

The normalized fMRI time-series datasets from all participants
were concatenated in the temporal dimension and used to train
HMM to generate a group-level sequence of a finite number of
states with varying patterns in neural activation. Specifically, the
HMM was trained with emissions in Gaussian distribution,
which was used in prior fMRI studies (Vidaurre et al., 2017,
2018) and is appropriate for the fMRI data used in this study.
Here, each state was represented by the average modes of brain
activation that are emitted or enacted with some degree of var-
iance in Gaussian distribution. The HMM-MAR (Hidden
Markov model–multivariate autoregressive) toolbox (Vidaurre
et al., 2016) was used to accomplish the analysis. Estimations
on parameters of state distributions, progression through states,
and transition probability matrix were conducted by using the
HMM-MAR toolbox. A state matrix (S12×50) showing the state
distribution across the 50 brain parcellations for the 12 states
was calculated for further activation localization (detailed in
Section “Localizing the brain activation in each HMM state”).

Fig. 1. Design concept generation experiment pro-
cess with an example problem and corresponding
inspirational stimuli.
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The appropriate number of states for a HMM is usually deter-
mined within an iterative procedure (McComb et al., 2017b; Pohle
et al., 2017). A range of varying numbers of hidden states from 2
to 32 was tested for the HMM training, and log-likelihood values
were compared among all the models. Here, log-likelihood is a
measure of model accuracy, describing the probability that the
observed data was produced by the trained model. The resulting
differences in log-likelihood values between models were negligi-
ble, providing no basis on which to choose the number of states.
As a result, 12 was determined as the number of states and used
for model training in prior work (Goucher-Lambert and
McComb, 2019) and the current study to align with previous lit-
erature in neuroscience applying 12-state HMM to neuroimaging
data (Vidaurre et al., 2017, 2018).

Localizing the brain activation in each HMM state

The 12 HMM states from Goucher-Lambert and McComb (2019)
were used in the current work for the investigation of the brain
activation patterns related to concept generation. As mentioned
in Section “Hidden markov modeling”, each state was represented
by the average mode of brain activation, so a state matrix (S12×50)
with mean values of activation was calculated and used. The state
matrix has 12 row vectors that stand for 12 states. Each row vector
contains 50 contributing indices, which are mean values from a
Gaussian distribution and represent the average contribution
from the corresponding parcellation. The state matrix was used
to project the activation back into a higher-dimension activation
matrix with more voxel elements. The mathematics is represented
in Eq. (1).

X ¼ S× A: ð1Þ

A mixing matrix (A50×32,767) including the voxel compositions
of the 50 parcellations was provided by the HCP (Ugurbil and
Van Essen, 2017) and applied to the states matrix (S) here for
the generation of high-dimension and whole-brain activation
matrix (X12×32,767) associated with the 12 states. Here, 32,767
represents the dimension length of the standard 32k surface
meshes provided by the HCP mixing matrix template (16-bite
integers and limited to 32,767 in each dimension) (Elam et al.,
2013). Then, the activation for each state (a row vector in X )
was coded and converted into appropriate CIFTI-2 format files.
Doing so enabled the visualization of each HMM state in an acti-
vation heatmap using the HCP visualization and discovery tool
wb_view (Marcus et al., 2013).

An investigation of the physical locations in the brain and pos-
sible cognitive functions associated with the HCP 50 parcellations
was performed to better understand the activation patterns of the
HMM states. Specific Montreal Neurological Institute and
Hospital (MNI) coordinates for the center point of each parcella-
tion were extracted in the wb_view tool. The extracted MNI coor-
dinates for each parcellation were localized into brain regions and
Brodmann areas using the Biolmage Suite tool (Papademetris
et al., 2006). Then a meta-analytical database of fMRI studies,
NeuroSynth, was used to map between the parcellation MNIs
and associated cognitive functions (Yarkoni et al., 2011).
NeuroSynth operates by using combined text-mining,
meta-analysis, and machine-learning techniques to generate prob-
abilistic mappings between cognitive functions and neural activa-
tion in the brain region with corresponding MNI coordinates
(Yarkoni et al., 2011). The cognitive functions in NeuroSynth
are coded into specific psychological terms, such as working
memory, retrieval, visual, or large-scale brain networks. A total
of 14,371 fMRI studies have been used in NeuroSynth for a robust
and reliable inference mapping between brain regions and cog-
nitive functions (Yarkoni et al., 2011; Yakoni, 2022).
NeuroSynth has been used in previous research to localize brain
regions of interest and identify common cognitive functions in
fMRI datasets related to design (Goucher-Lambert et al.,
2017a). This coordinate-to-term mapping approach was used in
the present work to infer cognitive functions associated with
each parcellation and then each HMM state. The psychological
terms with a high likelihood of associating with the activation
in the MNI coordinate (represented by a posterior probability P
(term | activation) from Naïve Bayes Classification higher than
0.75) were selected as cognitive functions associated with the par-
cellation. Eventually, for each state, the key parcellations (i.e., par-
cellations with top 3 contributing indices to the state in the state
matrix) and their associated cognitive functions (i.e., psychologi-
cal terms extracted from NeuroSynth) were identified for further
interpretation of the state.

Results

Using the methodologies outlined in Section “Methods”, this
study investigates the patterns of neural activation that are asso-
ciated with each of the states discovered by Goucher-Lamber
and McComb (2019). Cognitive functions associated with each
of the HMM states were inferred based on meta-analysis from
NeuroSynth. State transfers between the HMM states were also
uncovered and interpreted.

Fig. 2. fMRI data pre-processing and preparing. Steps A and B were performed in the prior work. The current study processed and analyzed the fMRI data in Steps
C, D, and E.
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Patterns of neural activation associated with the 12 states

The 50 parcellations acquired from the HCP were localized to spe-
cific brain regions and Brodmann areas for further interpretation.
Six parcellations were removed from the summary since the acti-
vation (i.e., z-scores) were negligible. A summary of associated
brain regions for the other 44 active parcellations can be found
in Table A1 in the Appendix. In addition, possible cognitive func-
tions described by the psychological terms extracted in
NeuroSynth, associated with each parcellation, are also listed in
Table A1.

To directly illustrate the neural activation patterns associated
with each HMM state, brain activation heatmaps of the 12 states
were created using the wb_view tool and presented in Figure 3.
The activation map for each state was generated by projecting
the state matrix for the 50 parcellations back to high-dimension
activation within each voxel element, which is described in
Section “Localizing the brain activation in each HMM state”. As
shown in the activation heatmap, distinct locations in the brain
and patterns of activation are associated with the 12 HMM states.
State 4 has significantly higher activation than other states, mainly
in the prefrontal cortex and motor cortex. States 1, 7, and 11 show
negative activation in a wide range of brain regions. Other states
show strong activation in either the PFC, temporal cortex, or
occipital cortex. For example, States 2, 8, and 10 show strong acti-
vation in the occipital and temporal cortex, while State 6 mainly
involves activation in the PFC.

When using the HMM approach, the activation pattern for
each state has a linear relationship with the activation in the
brain parcellations, represented in the state matrix. Figure 4
uses a color-coded state matrix to represent the contribution
indices of the 44 active parcellations to each state. The 44 parcel-
lations were reordered and clustered based on the cortex they are
in to more clearly show the activated cortex for each state. A few
parcellations include more than one cortex in the human brain,
and therefore appear along the y-axis of the figure multiple times.

As shown in Figure 4, State 4 shows higher activation levels
than other states, including in the prefrontal cortex, temporal cor-
tex, parietal cortex, and motor cortex. Another finding is that
some states show stronger activations in one or two cortexes
than other brain regions. For example, States 2 and 5 are more
involved in the occipital and temporal cortex; State 6 has stronger
activations in the prefrontal cortex than other regions. States 3
and 10 show their major activation in the occipital cortex.
States 1 and 11 are less activated but have major activation in
the occipital cortex; State 7 also shows less activation in most
brain regions except for activation in the occipital cortex, cingu-
late cortex, and prefrontal cortex.

Key parcellations for each state and possible cognitive
functions

To identify physical brain locations of major activation for each
state and infer cognitive functions, the top 3 parcellations of the
state (ranked by the contributing indices in the state matrix)
were identified. Cognitive functions of the parcellations, coded
as concise physiological terms, were extracted using a
coordinate-to-term approach based on the meta-analysis from
NeuroSynth (Section “Localizing the brain activation in each
HMM state”). Table 1 here lists the top 3 parcellations for each
inferred state, plus their physical location in the brain, and asso-
ciated cognitive functions from meta-analysis.

Table 1 shows distinct patterns and physical locations of acti-
vation in the 12 HMM states. The physical locations of the top 3
parcellation for each state provide a consistent mapping with the
state activation heatmap in Figure 3 and the color-coded state
matrix in Figure 4. For example, State 4 shows higher activation
in a wide range of brain regions. To be more specific, the major
activation is in the dorsolateral PFC and posterior parietal cortex
from the ECN, which is generally associated with executive con-
trol of working memory (Chatham et al., 2011), middle temporal
cortex, and bilateral supplementary areas for motor tasks (Chu
and Black, 2012). Another example is State 6 that mainly involves
activation in the PFC. The major activated brain regions of State
6, shown in Table 1, are predominately in the PFC, including the
dorsolateral PFC, ventromedial PFC, and inferior frontal gyrus,
which are usually involved in rule-based reasoning (Rudorf and
Hare, 2014; O’Bryan et al., 2018), comprehension (Gernsbacher
and Kaschak, 2003), and the executive control function from
the ECN (Chatham et al., 2011).

In addition to the consistent mapping, Table 1 also filters the
major activated brain regions in the states that are less active and
hard to notice. For instance, State 1 shows significant activation in
the occipital cortex that is critical for visual processing (Clarke
and Miklossy, 1990). State 7 involves activation in the occipital,
orbitofrontal, and posterior cingulate cortex from the DMN.
DMN usually engages in rest state or spontaneous and associative
processes (Beaty et al., 2020). For State 2, except for the activation
in the temporal and occipital cortex, the rostrolateral PFC is also a
major brain region of activation. The restrolateral PFC is generally
associated with rule-based reasoning (Hobeika et al., 2016;
Paniukov and Davis, 2018).

Regardless of the specific activation patterns, most states com-
bine collection of widespread brain regions that are functionally
connected within large-scale networks. The associated networks
here mainly include ECN, DMN, visual network, and motor net-
work. The 12 inferred states share some consistent cognitive func-
tions related to these brain networks. For instance, semantic
processing and memory retrieval are two frequent functions listed
in Table 1. Semantic processing refers to a human’s ability to use,
manipulate, and generalize knowledge to support verbal and non-
verbal behaviors (Ralph et al., 2017). Memory retrieval is the pro-
cess that involves the interactions of triggers/cues and stored
memory traces (Frankland et al., 2019). Most states, except for
States 1, 3, and 10, involve activations that are closely associated
with either executive control of working memory or spontaneous
associative processing for semantic and retrieving processes.

Another shared cognitive function in multiple states here is
visual processing. All states, except for States 4, 6, and 12, show
major activation in the primary visual processing-related brain
regions. Finger tapping is also a common cognitive function in
a few inferred states, including States 3, 4, 5, 9, and 10. This func-
tion from the motor network is involved because the experiment
asked participants to click on a button when they generated a con-
cept. A baseline correction with the fMRI data during the n-back
task was used to remove the noise associated with movement in
the experiment. However, there can still be activation associated
with motivational or imaginary finger movement before or
when designers clicked the button.

Likelihood of state occupancy and state transitions

Among the 12 states identified in Goucher-Lambert and
McComb (2019) for the aggregated fMRI data related to concept
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generation, seven states, the state probability matrix suggests
States 1, 2, 3, 4, 6, 7, and 11, show a higher probability of occu-
pancy than the rest states (i.e., States 5, 8, 9, 10, and 12). These
less-occupied states might represent random activation patterns
less relevant to the design task. Figure 5 shows the time-varying
occupancy probability of the seven states that are highly likely
to occur in the process of concept generation. Among these states,
States 2, 4, 6, 7, and 11, are more likely to be occupied, especially
State 4, with the highest likelihood of being occupied than other
states.

The dynamic pattern between the 12 states was represented
using possible switches between the 12 states. Only strong transi-
tions with a probability higher than 10% were included in
Figure 6a. Strong diagonal elements suggest that participants are
likely to stay in a single state across several brain image acquisi-
tions. Other strong off-diagonal elements show a dynamic pattern
and transition between different states. These transition paths
with a transition probability greater than 10% are highlighted
and included in Figure 6b.

As shown in Figure 6b, the states that are least likely to be
occupied (i.e., States 5, 8, 9, 10, and 12) have a high probability
of transitioning to States 4, 6, 7, and 2, but not to States 1, 3,
and 11. As mentioned, these less-occupied states might represent

random activation patterns less relevant to the design task. This
transition might represent a shift from a random state back to
the active states for concept generation, especially to States 2, 4,
and 6. These states involve activations in the lateral PFC from
the ECN. The executive control functions associated with these
states can inhibit cognitive processing on irrelevant information
and amplify attention for internal representation of insights.
Among other active states, there are some state switches with
higher probability, for example, State 6 to State 4 (31%), State 1
to State 6 (22%), State 2 to State 11 (21%), State 11 to State 6
(17%), and State 7 to State 2 (16%). These transition paths
between the key states suggest possible dynamic and recurring
patterns in neurocognition related to concept generation.

Discussion

This study used a HMM approach to uncover the spatial and tem-
poral patterns in fMRI data related to design concept generation.
Using this approach, 12 distinct states, with dynamic switches
between each other, were automatically inferred from the data.
Specific activation patterns in each state were linked to different
physical locations in the brain and varying cognitive functions
based on meta-analysis. Furthermore, the state transition routes

Fig. 3. Activation heatmap for the inferred 12 HMM states from the aggregated fMRI data. The states are characterized by their mean activation that projected from
the 50-dimension parcellations to whole brain space.
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and difference in state occupancy between the high- and low-
performing designers can provide meaningful explanations to
their different design performances.

Associations and distinctions between the key states

Among the 12 distinct states, several key states showed a higher
likelihood of being occupied and transiting than the other states,
including States 2, 4, 6, and 7. Consistent cognitive functions
associated with these states are semantic processing and memory
retrieval (Burianova and Grady, 2007; Goldberg et al., 2007).
These two cognitive functions echo the associative theory of crea-
tivity (Mednick, 1962) and a common view on analogical reason-
ing (Forbus et al., 1995) that support the creative process. Here,
analogical reasoning is the inference inspired by the source, and
applied to a target (Forbus et al., 1995; Chan and Schunn,
2015; Goucher-Lambert et al., 2019). Semantic processing sup-
ports the generation of new ideas by offering a semantic knowl-
edge base of facts and concepts for screening and selection
(Mednick, 1962; Beaty et al., 2020; Gerver et al., 2022).
According to the associative theory of creativity, people who
have a loosely structured semantic knowledge base are better at
creative tasks because they are more capable of forming associa-
tions with remote semantic distance (Mednick, 1962).
Considering the semantic nature of inspirational stimuli provided
in the design task, semantic processing can play a critical role for
participants to cognitively process the semantic similarity and
making associations between the inspirational stimuli and the

design solutions. Memory retrieval is an essential step that enables
searching and recognizing a useful and relevant concept stored in
designers’ memory (Gomes et al., 2006). Successful retrieval of
memory can then be used in the subsequent generation of solu-
tions to the design problem. The findings emphasize the impor-
tance of semantic processing and memory retrieval to design
concept generation with inspirational stimuli. More specific char-
acteristics of semantic processing and memory retrieval, for
instance, semantic similarity, divergent or convergent semantic
processing, and memory retrieval cues, plus their correlates with
ideation performance can be studied with more details in future
research.

Even though these states have shared cognitive functions, they
involve varying physical locations of activation in the brain.
Figure 7 illustrates the key brain regions (Brodmann areas) of acti-
vation for the four major States. The differentiated activation pat-
terns of these states suggest potentially different roles for semantic
and retrieving processing. Considering the temporal patterns in
occupancy likelihood, these states might represent difference
sequences in cognition related to concept generation.

State 6 might be responsible for stimuli encoding and goal
defining
The activation pattern of State 6 is mainly within the inferior
frontal gyrus (Brodmann area—BA 44) and supramarginal
gyrus (BA 40), which are mainly involved in semantic and (spe-
cifically) verb comprehension (see Table 1), and dorsolateral PFC
(BA 46) for rule and demand processing. Activation in the BA 44

Fig. 4. Contribution indices of the parcellations to each state. The color
represents the value of contribution from the parcellation to the state.
The parcellations are reordered and clustered based on the cortex.
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and BA 40 is often linked to verb processing, especially for com-
prehension (Bak et al., 2001; Giraud et al., 2004; Sahin et al., 2006;
Newman et al., 2009). Dorsolateral PFC is critical for representing
and maintaining information related to goals and rules to guide
behavior (Bunge et al., 2003; Wallis and Miller, 2003).
Considering the distinct increase in the likelihood of occupancy
of State 6 directly after the introduction of the inspirational stim-
uli (Word Set 1 at 0 s and Word Set 2 at 60 s), a possible interpre-
tation of State 6 is to comprehend and encode the stimuli for goal
defining.

State 4 appears to be generating new concepts inspired by the
stimuli
In contrast, State 4 mainly shows activation from the ECN
(including the dorsolateral PFC and posterior parietal cortex).
Activation within the ECN is heavily involved with executive con-
trols of internal retrieving information from working memory
and relational integration (Curtis and D’Esposito, 2003;
Gonen-Yaacovi et al., 2013). Several neuroimaging studies
found significantly higher activations in the dorsolateral PFC
and posterior parietal cortex in support of relational integration
(Green et al., 2010; Blumenfeld et al., 2011) and creative genera-
tion task (Kowatari et al., 2009; Gonen-Yaacovi et al., 2013). The
middle temporal gyrus (BA 37), in charge of semantic and epi-
sodic memory in creative insight (Shen et al., 2017) and forma-
tion of novel associations from analogy (Hao et al., 2013) is
also activated in State 4. Prior work that applied the general linear
modeling (GLM) approach to the same fMRI data as the current
study found that temporal brain activation were closely associated
with insights inspired by the stimuli as well (Goucher-Lambert
et al., 2019). A possible interpretation of State 4 is generating
new concepts with the inspirational stimuli. The activation in
the motor network of State 4 might be associated with motiva-
tional or imaginary finger movement before designers confirmed
the insights in their minds and planned to report the generation
of a new concept.

State 7 might switch between internal and external attention
The main brain regions involved in State 7 include the inferior
occipital gyrus for external visual processing (Clarke and
Miklossy, 1990), orbitofrontal cortex for internal memory

Table 1. Key parcellation to each state and possible cognitive functions

State

Key parcellations and brain
regions (Brodmann areas:
BA)

Cognitive functions based
on meta-analysis

State
1

40, 29, 43
R lateral occipital gyrus (BA
19)

Sight, visual, eye
movement

State
2

39, 37, 42
L/R middle temporal gyrus
(BA 21)
L/R rostrolateral PFC (BA 10)
L/R lateral occipital gyrus (BA
18)

Word, semantic, verb,
encoding
Rules, retrieval, reasoning
Visual, eye movement

State
3

42, 2, 33
L lateral occipital gyrus (BA
18)
L supplementary area (BA 6)

Visual, eye movement,
reading, real world
Finger tapping, hand
movement

State
4

19, 23, 11
L/R supplementary area (BA
6)
L/R dorsolateral PFC (BA 9)
L/R posterior parietal cortex
(BA 7)
L/R middle temporal gyrus
(BA 37)

Finger tapping, motor
task
ECN, mnemonic,
language, semantics,
solving
ECN, calculation, memory
load
Word, semantic,
encoding/retrieval,
intentional

State
5

39, 42, 41
L/R middle temporal gyrus
(BA 21)
L/R rostrolateral PFC (BA 10)
L lateral occipital gyrus (BA
18)
L supplementary area (BA 6)

DMN, word, semantic,
verb, encoding
Rules, retrieval, reasoning
Visual, eye movement
Motor, movement,
tapping, imagery

State
6

35, 28, 9
L ventromedial PFC (BA 10)
L inferior frontal gyrus (BA
44)
L dorsolateral PFC (BA 46)
L supramarginal gyrus (BA
40)

Beliefs, reward
Semantic, verb,
comprehension
ECN, working memory,
demands, rules
Verb, sentences,
language,
comprehension

State
7

43, 29, 18
R lateral occipital gyrus (BA
19)
L/R posterior cingulate area
(BA 31)
L orbitofrontal cortex (BA 10)

Sighted, visual, eye
movement
DMN, episodic, retrieval,
self-referential
Memories, retrieval;
recollection

State
8

42, 10, 30
L lateral occipital gyrus (BA
18)
R Front eye field (BA 8)
R angular gyrus (BA 39)

Visual, eye movement
Memory load, demand,
front-parietal
Attention, theory of mind,
social cognition

State
9

2, 41, 30
L lateral occipital gyrus (BA
18)
L supplementary area (BA 6)
R angular gyrus (BA 39)

Reading, visual
Motor, movement,
tapping, imagery
Theory of mind, social
cognition

State
10

25, 3, 41
L lateral occipital gyrus (BA
18)
L supplementary area (BA 6)

Visual, eye movement,
action observation
Motor, movement,
tapping, imagery

State
11

39, 41, 42
L lateral occipital gyrus (BA
18)

Visual, eye movement
DMN, word, semantic,
verb, encoding

(Continued )

Table 1. (Continued.)

State Key parcellations and brain
regions (Brodmann areas:
BA)

Cognitive functions based
on meta-analysis

L/R medial temporal gyrus
(BA 21)
L/R orbitofrontal cortex (BA
10)
L supplementary area (BA 6)

Rules, retrieval, reasoning
Motor, movement,
tapping, imagery

State
12

32, 11, 27
L/R anterior PFC (BA 10)
L/R dorsolateral PFC (BA 9)
L/R posterior parietal cortex
(BA 7)
L/R inferior temporal gyrus
(BA 37)

Noxious
ECN, mnemonic,
language, semantics,
solving
ECN, calculation, memory
load
Word, semantic,
encoding retrieval,
intentional

DMN, default mode network; CEN, central executive network.
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retrieving (Young and Shapiro, 2011; Farovik et al., 2015), and
PCC, a core backbone for DMN. The PCC is typically linked to
a central role in supporting internal-directed attention for epi-
sodic memory retrieving and future planning (Buckner et al.,
2008). However, there are still debates regarding the exact func-
tions of PCC in the neuroscience literature. A comprehensive
review on the role of the PCC in neuroimaging studies found
its possible role associated with switching between internal and
external attention (Leech and Sharp, 2014). State 7 might serve
to sustain insightful thoughts by flexibly switching from the exter-
nal visual process to internal retrieval of memory to generate con-
cepts or a reverse switch from the internal controlled process to
external attention to the design space.

State 2 seems to contribute to solution evaluation and goal
monitoring
Like State 6, a critical function for State 2 is rule-based reasoning.
The specific brain region is the rostrolateral PFC. Rostrolateral
PFC has been identified as a brain region in support of high-order
cognitive functions in rule-based analogical reasoning (Christoff
et al., 2001; Hobeika et al., 2016), and memory retrieval
(Westphal et al., 2016AQ4AQ6 ). In particular, rostrolateral PFC plays an
evaluative role in rule-based reasoning (Hobeika et al., 2016;
Paniukov and Davis, 2018). This evaluative role seems to hold
true when designers assess whether their associations are appro-
priately made, or their solutions meet the demand when generat-
ing concepts with the support of inspirational stimuli. State 2
might represent concepts assessments and evaluations.
Additionally, higher activation in the occipital cortex is also
involved in State 2 which suggests external attention to the design
problem or stimuli.

It should be noted that these interpretations of states were
made based on reverse inference. The claims about particular cog-
nitive processes were inferred from reasoning backward from the
observed brain activity rather than directly testing. However, the
meta-analytic framework applied in this work using

NeuroSynth can potentially address possible problems of reverse
inference by enabling researchers to conduct quantitative reverse
inference on a large scale of studies. These interpretations of states
only represent possible explanations based on the state occupancy,
associated brain regions and cognitive functions. Future research
should investigate this link between design cognitive processing
and neurocognitive patterns more directly to examine the inter-
pretations. Another possible limitation is that only group-level
inference was performed using temporal concatenation for group-
level analysis on states occupancy and transitions. Subject-level
analysis can be reconstructed in future research to explore indi-
vidual characteristics in neurocognition related to concept genera-
tion. More detailed and richer descriptions on the dynamic
patterns and transitions among the key states can be also explored
based on individual data analysis.

Performance-differentiated characteristics in state occupancy
and cognitive functions

States 6, 4, 7, and 2 represent recurring patterns in neurocognition
related to the use of the stimuli and generating new concepts. The
prior research also found high-performing designers (i.e.,
designers with higher idea fluency) showed higher occupancy
probability in these states. Figure 8 shows the differences in
state occupancy likelihood averaged in every 15 s between the
high- and low-performing designers. High-performing designers
show a higher likelihood of occupancy in States 2, 4, 6, and 7,
which are mainly associated with activation in the brain regions
from the large-scale networks of ECN and DMN. ECN and
DMN are two brain networks widely studied in creative cognition
literature (Beaty et al., 2016). ECN and DMN, plus their coupling
activation, are believed to play inevitable roles in tasks that
demand creative processing, such as divergent thinking
(Heinonen et al., 2016), analogical reasoning (Hobeika et al.,
2016), creative idea generation (Beaty et al., 2015), and art creat-
ing (Kowatari et al., 2009).

Fig. 5. The probability of occupancy in the seven states that are more likely to be occupied in the process of concept generation.
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On the contrary, low-performing designers showed a higher
likelihood in States 1, 3, and 11 in the duration of concept genera-
tion after introducing the stimuli. State 1 mainly shows activation
in the occipital cortex, so its possible role is visual processing for
external information when there is no clue or insight from inter-
nal processing or participants are unable to generate new concepts
under time or other constraints. State 3 also involves activation in
the occipital cortex. Prior research has linked an increase in visual
processing with participants being unable to solve problems with
insight (Kounios et al., 2006), design fixation without new ideas
(Fu et al., 2019), or an unsuccessful external search without
insights (Goucher-Lambert et al., 2019). The state might represent
a continued external search for inspiration when participants can-
not retrieve helpful information from memory. State 11 seems to
have similar activation patterns as State 2. However, the level of
activation has significantly decreased. This diminished activation
pattern in State 11 might render the corresponding cognitive
functions not as effective as State 2. Other less-occupied states,
including States 5, 8, 9, 10, and 12, might represent random acti-
vation patterns less relevant to the design task and are not dis-
cussed here.

The performance differentiated characteristics in neurocogni-
tion suggest potential leverage points in design fluency and crea-
tivity training. For instance, training or interventions in education
can target improving neurocognitive ability in the ECN and DMN
for semantic processing and memory retrieval while controlling
unnecessary visual processing or eye movements. More research
in design and education can take advantage of neuroimaging
methods to shed light on strategies or practices that improve
design performance by offering a new layer of data and insightful
knowledge of hidden brain activities related to design cognition.

Noticeably, the classification of high- and low-performing
designers was based on idea fluency, which means high-
performing designers generate new concepts more quickly and
fluently. High-performing designers might be quicker to encode
the stimuli and define the goal, and then retrieve information
from memory and generate the targeted concepts through

reasoning. Idea fluency is a critical measure for creativity in idea-
tion (True, 1956; Mirabito and Goucher-Lambert, 2021).
However, a limitation is that only idea fluency was compared,
while other metrics, such as novelty, quality, and feasibility, are
not included in this analysis. This can be seen as a challenge
posed by utilizing fMRI as a method for studying design, as cap-
turing full design concepts (e.g., through think aloud protocols, or
drawing/typing) is quite challenging in the MRI environment.
Future research should explore mechanisms to capture the gener-
ated concepts and explore how other creativity metrics correlate
with dynamics of design neurocognition, while accounting for
possible data quality concerns that may emerge (e.g., via motion
artifacts). Additionally, this work mainly investigates design neu-
rocognition related to concept generation, which is believed to be
a key activity in the design process shaping the creativity of sub-
sequent design phases (Cross, 2001; Yang, 2009; Hay et al., 2019).
However, design is a complex process involving multiple stages
and activities, and spanning in varying time durations. There is
a substantial need for more design research to explore behaviors
and neurocognition related to different stages of design and the
dynamic patterns in this process as well.

Possible transition routes related to concept generation

Several possible transition routes can be observed from the transi-
tion matrix in Figure 6b plus the temporal sequence of occupancy
for each state in Figure 5. Three possible routines are highlighted
in Figure 9. There is a distinct increase of likelihood in States 1, 6,
and 11 right after introducing the stimuli (shown in Fig. 5), and
the transition probability is high from State 11 to State 1 (10%),
State 1 to State 6 (22%), and State 11 to 6 (17%) (shown in
Figs. 6, 9). There seems to be a transition route (path 1 in
Fig. 9), including States 11 – 1 – 6 or States 11 –
6. Considering the activation patterns and cognitive roles of
these states, this route might be associated with a process that par-
ticipants catch sight of the stimuli/verbs, then pass the visual

Fig. 6. Strong transitions (probability > 10%) between states (a) and transition paths with high probability between states (b).
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information to the prefrontal cortex for encoding the stimuli and
defining the goal of the problem.

After stimuli encoding and goal defining, the information will
transit from State 6 to State 4 (31%) for analogical reasoning and
generation of concepts. Then another transition route, a loop
including State 4 – 7 – 2 – 4, might represent a recurring process
of insights. Once an insight occurs, a switch from State 4 to 7
(13%) might help designers achieve a quick shift from the internal
retrieving process to external attention to the stimuli. Then, the
transition from State 7 to 2 (16%) suggests the cognitive process-
ing of solution evaluation and goal monitoring to initiate a new
round of concept generation in State 4. This transition route
(path 2 in Fig. 9) may represent the successful use of the stimuli,
leading to insights and generating new concepts.

In addition to the transition from State 2 to 4, the transition
from State 2 to 11 also has a high probability (21%, see Fig. 7).
Thus, there is a high probability that the transition loop State 6
– 4 – 2 intersects with the other transition path of State 11 – 1
– 6. There can be another transition cycle including State 4 – 7
– 2 – 11 – 1 – 6 – 4 in the process of concept generation (see
path 3 in Fig. 9). States 11 and 1 here represent an extended pro-
cessing in the external attention system and visual-related regions.
State 6 is involved for re-encoding the stimuli and redefining the
goal for the problem. This transition route might happen when
participants are at an impasse during problem solving. When
they are not able to retrieve more useful information and new
insights from internal search, they switch their attention systems
and attempt to pay more attention to the external environment
for insights with visual processing. They might even need to
re-encode the stimuli and re-define the goals to generate other
concepts. This transition route appears to be indicative of a con-
tinued and less successful external search process for inspiration.

Implications for future work combining HMM and design
neurocognition

Overall, the findings presented in this work demonstrate that
HMM is a well-suited approach to recognizing the recurring pat-
terns of both spatial and temporal dynamics in design neurocog-
nition. HMM can capture rich information contained in the
entire fMRI dataset. It also bypasses some problems and statistical
limitations in classical methods for fMRI analysis. Classical
methods usually rely on significant assumptions regarding the
timing of activation and brain regions of interest. For example,
the sliding window approach assumes a pre-specification of the
timescale at which the neural activation occurs. This pre-defined
temporal window limits its statistical power to detect the
dynamics in neurocognition (Hindriks et al., 2016; Vidaurre
et al., 2018). In contrast, there are no assumptions related to
the underlying model structure when using the HMM approach.
Therefore, latent patterns (states) can be automatically inferred in
a completely unsupervised way, which makes HMMs suitable for
exploratory analyses of neurocognition data relative to design.

Using HMM leads to the findings that echo prior design neu-
rocognition literature and show consistency regarding the highly
activated brain regions associated with concept generation and
insights (Rudorf and Hare, 2014; Shen et al., 2017;
Goucher-Lambert et al., 2019; Gerver et al., 2022). Here, the data-
driven functional parcellation of human brains from a large data-
set provides more stability in the HMM inputs. Additionally, the
HMMmethodology enriches knowledge in design neurocognition
by unveiling the dynamic switches between the states with varying
spatial and temporal patterns related to design concept genera-
tion. Prior neuroscience studies have used a similar HMM
approach to investigate resting-state fMRI data and found that
the transitions between states or networks are far from random
(Baker et al., 2014; Vidaurre et al., 2017, 2018). The current
work used HMM and captured the transient and dynamic
switches between the discovered states that meaningfully

Fig. 7. Key brain regions of activation for States 6, 4, 7, and 2. The brain regions (Brodmann areas, BA) with the top 3 contribution indices (shown in Table 1) for the
states are highlighted in corresponding locations with the BA number.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809



characterized possible sequences in cognition for generating con-
cepts. The state switches also offer insightful explanations of the
dynamic neural patterns that influence performance in concept
generation.

A limitation of the HMM inference used in this work is the
prior specification on the number of states K. The log-likelihood
values with different selections of K (e.g., from 2 to 32) did not
significantly change when performing the model selection. So
the choice of 12 states was chosen to better align with prior neu-
roimaging studies that applied HMM to fMRI data (Vidaurre
et al., 2017). However, the findings (e.g., low occupancy likelihood
in some states) suggest that a lower number of states may present
a better trade-off between richness and redundancy and should be
explored in future work. In addition, other model selection
methods, such as model evidence via the free energy used in
Bayesian inference techniques, can be adapted to select an appro-
priate number of states (Baker et al., 2014).

In summary, the results show the power of using HMM to
uncover the neural patterns of design. This study unveils different
states in neurocognition with dynamic spatial and temporal pat-
terns and helps to construct a more insightful understanding of
design neurocognition. The current work focused on the activa-
tion patterns of the discovered states related to concept genera-
tion. Network patterns or functional connectivity is another
focus in the creative cognition research community. HMM also
provides benefits to network analysis in fMRI data (Vidaurre
et al., 2017, 2018). Future research can move from isolated activa-
tion toward exploring broad patterns in neural activation net-
works. The results from future research are expected to show
how large-scale networks in the brain and functional connectivity
contribute to design ideation.

Conclusion

This study used a HMM approach to uncover the spatial and tem-
poral patterns in fMRI data related to design concept generation.
The underlying fMRI data were collected when participants gen-
erated solutions to open-ended design problems in two concur-
rent blocks, each lasting 60 s. Twelve distinct states, with
dynamic transitions between each other, were automatically
inferred from the HMM method. Specific activation patterns
associated with each state were identified and linked to varying

brain regions and cognitive functions. The HMM states with
higher likelihood of occupancy show more activation in the
brain regions from the executive control network, the default
mode network, and the middle temporal cortex. Multiple cog-
nitive functions (e.g., semantic processing, memory retrieval,
executive control, and visual processing) are involved in the key
states in neurocognition related to concept generation. Highly
possible transitions between the states in neurocognition are iden-
tified and suggest possible transitions between different cognitive
processes (e.g., from visual processing to rule-based reasoning,
from internal retrieving process to external attention). The func-
tions of the states in neurocognition offer meaningful explana-
tions on the different patterns between designers with high and
low idea fluency. To summarize, this study shows the potential
of HMM in identifying spatial and temporal patterns in the
fMRI data related to design cognition. HMM offers a deeper
understanding of the dynamics in neurocognitive processing
and brings new knowledge to the design cognition community.
Researchers in design neurocognition, not limited to those
using fMRI but also EEG or fNIRS, can take advantage of
HMM or other relevant machine learning techniques to provide
a more detailed description of brain dynamics in design
cognition.
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Table A1. HCP Parcellations, physical locations and cognitive functions

Parcellation

MNI coordinates of
central points
Brain regions;
Brodmann area

Cognitive functions based on
meta-analysis

1 (–2,–88,32)
L lateral occipital
gyrus; BA 19
(–2,–68,2)
L lateral occipital
gyrus; BA 18

Memory encoding,
experience, Word pairs;
Lingual, visual

2 (–22,–100,–4)
L lateral occipital
gyrus; BA 18

Reading, visual word, face,
videos

3 (–16,–96,20)
L lateral occipital
gyrus; BA 18

Visual, eye movement

4 (–42,–80,–6)
L lateral occipital
gyrus; BA 19

Visual, object, face

5 (–40,46,–2)
L anterior prefrontal
cortex; BA 10
(–16,36,48)
L front eye field; BA 8

Rules, reasoning, item,
retrieval, semantic;
Remembering, experience,
thinking, semantic,
mentalizing, retrieval

6 (–6,–64,52)
L/R superior parietal
lobule; BA 7
(–40,–76,30)
L/R angular gyrus;
BA 39

Calculation, planning,
working memory, memory
load, execution;
Memory retrieval, default,
episodic, task, difficulty,
retrieved

7 (52,–48,44)
R supramarginal
gyrus; BA 40
(58,–46,–8)
R inferior temporal
gyrus; BA 37
(40,40,16)
R anterior prefrontal
cortex; BA 10

Emotion regulation,
monitoring, competing;
Memory encoding, character
(language), memory;
Working memory, detecting,
memory load, memory task,
painful

8 (–40,–80,24)
L/R lateral occipital
gyrus; BA 19
(–16,–68,52)
L/R superior parietal
lobule; BA 7

Visual motion, episodic,
memory tasks;
Spatial, eye, visual, task,
attention

9 (–40,36,20)
L dorsolateral PFC;
BA 46
(–60,–36,36)
L supramarginal
gyrus; BA 40

ECN, working memory,
demands, rules;
Verbs, sentences, language,
comprehension

10 (40,20,44)
R front eye field; BA 8
(50,–60,34)
R angular gyrus; BA
39

Cognitive, task;
Dorsal attention, attention

11 (–40,26,24)
L/R dorsolateral PFC;
BA 9
(–56,–52,–10)
L/R inferior temporal
gyrus; BA 37
(–28,–56,48)

ECN, memory, working
memory, retrieval, encoding;
Word, semantic, retrieval;
ECN, word, working memory,
attention

(Continued )

Table A1. (Continued.)

Parcellation MNI coordinates of
central points
Brain regions;
Brodmann area

Cognitive functions based on
meta-analysis

L/R intraparietal
sulcus; BA 7

12 (–12,52,36)
L/R dorsolateral PFC;
BA 9
(–6,60,16)
L anterior PFC; BA 10

Social cognition, theory
mind;
Self-referential, emotion,
personality traits

13 (–24,–60,56)
L/R intraparietal
sulcus; BA 7
(–20,–82,40)
L/R intraparietal
sulcus; BA 7

Visual, eye;
Visual, reaching

14 (–60,–28,32)
L/R supramarginal
gyrus; BA 40

Motor, action observation,
painful, verb

15 (–40,12,48)
L supplementary
area; BA6
(–52,2,–20)
L temporopolar area;
BA 38

Episodic, mind, memories,
regulating, retrieval,
reasoning, judgments;
Comprehension, sentences,
language. Semantic, verbs,
theory of mind

16 (–10,–90,0)
L/R primary visual
cortex; BA 17

Visual, imagery, object,
motion

17 (–20,52,24)
L anterior PFC; BA 10
(–52, –52, 36)
L angular gyrus; BA
39

Emotion regulation, belief;
Memory retrieval, theory of
mind

18 (–20,60,4)
L anterior PFC; BA 10
(–4,–68,36)
L dorsal posterior
cingulate area; BA 31

Memories, recollection
retrieval;
DMN, recognition memory,
episodic, memory retrieval

19 (60,4,16)
R supplementary
area; BA 6

Finger movement, execution,
chosen, motor; tapping

20 (–44,–66,28)
L angular gyrus; BA
39

Semantic, episodic memory,
retrieval, memories, mind

21 (–40,48,0)
L/R anterior
prefrontal cortex; BA
10
(–40,20,28)
L/R dorsolateral PFC;
BA 9

Judgment, retrieval, memory
retrieval, rules, reasoning,
DMN, memory;
Retrieval, semantic,
language, word, characters

22 (–42,–72,4)
L/R lateral occipital
gyrus; BA 19

Motion, visual, visual motion

23 (–56,–2,28)
L/R supplementary
area; BA 6

Finger tapping, hand,
movement

24 (–22,–96,4)
R lateral occipital
gyrus; BA 18

Early visual, face, words

25 Visual, action observation

(Continued )
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Table A1. (Continued.)

Parcellation MNI coordinates of
central points
Brain regions;
Brodmann area

Cognitive functions based on
meta-analysis

(–28,–92,0)
L lateral occipital
gyrus; BA 18

26 (–16,52,32)
L dorsolateral PFC;
BA 9
(–52,22,12)
L inferior frontal
gyrus; BA 45

Theory of mind, episodic
memory, mental states;
Sentence, semantic,
comprehension, words, verb

27 (–36,48,16)
L/R anterior
prefrontal cortex; BA
10

Working memory, recall,
semantic memory, retrieval

28 (–52, 18, 16)
L inferior frontal
gyrus; BA 44

Semantic, verb,
comprehension

29 (25,–83,27)
R lateral occipital
gyrus; BA 19

Motion, visual, eye
movement

30 (50, –48, 18)
R angular gyrus; BA
39

Theory mind, empathy,
social cognition

31 (–60,–32,24)
L/R supramarginal
gyrus; BA 40

Foot, pain, body

32 (–28,42,26)
L anterior prefrontal
cortex; BA 10

Nociceptive

33 (–48,–24,56)
L supplementary
area; BA 6

Finger tapping, hand,
movement

34 (52,–24,52)
R primary
somatosensory
cortex; BA 1

Finger tapping, hand

35 (–4,64,–12)
L ventromedial
prefrontal cortex; BA
10

Beliefs, metabolism, reward

36 (–4,–26,64)
L/R primary motor
cortex; BA 4

Foot, movement, limb

37 (8,–92,–8)
L/R lateral occipital
gyrus; BA 18

Visual, force, real world

38 (–58,2,–4)
L/R superior
temporal gyrus; BA
22

Language, comprehension

39 (–56, –48,–12)
L/R middle temporal
gyrus; BA 21
L/R rostrolateral PFC;
BA 10

Word, semantic, verb,
encoding;
Rules, retrieval, reasoning

40 (–14,– 86,36)
R lateral occipital
gyrus; BA 19

Sighted, visual

(Continued )

Table A1. (Continued.)

Parcellation MNI coordinates of
central points
Brain regions;
Brodmann area

Cognitive functions based on
meta-analysis

41 (–4,0,65)
L supplementary
area; BA 6

Motor, movement, tapping,
imagery

42 (–8,–92,–8)
L lateral occipital
gyrus; BA 18

Visual, eye movement

43 (44,–80,–4)
R lateral occipital
gyrus; BA 19

Visual, face, object, viewing

44 (44,–80,0)
L/R lateral occipital
gyrus; BA 19
(–20,20,52)
L/R supplementary
area; BA 6

Visual, object, motion;
Familiarity, decision task

DMN, default mode network; CEN, central executive network.
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