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ABSTRACT 

The process of generating ideas during co-design with a 
Generative AI (GenAI) system requires the gradual calibration 
of trust in that system. Trust plays a pivotal role in shaping 
human interactions with technology, and developing 
well-calibrated trust is essential for the effective use and 
integration of GenAI. Proper trust calibration helps prevent 
underutilization of the system’s capabilities and dissatisfaction 
with its output. For engineers and system designers, trust is 
particularly important as it directly influences user responses, 
system adoption, and overall engagement with new 
technologies. To explore the factors that influence trust 
fluctuation when co-designing with a GenAI system, we 
analyzed 12 hours of conceptual human-AI co-design sessions 
using a custom GenAI system capable of producing images 
across various generation modes from convergent-divergent to 
abstract-concrete, and combining text and sketch prompting. 
Focusing on each moment of interaction with GenAI-generated 
images, we conducted an incremental and qualitative coding of 
each trust-related extract from think-aloud protocols. Through 
this approach, we identified 23 key factors that cause 
fluctuations in trust. Our findings reveal a complex network of 
factors that impact trust calibration, offering insights into how 
GenAI systems can be designed to facilitate faster and more 
effective trust-building in human-GenAI collaborations. 

Keywords: Conceptual design, Human-AI collaboration, 
Generative AI, Trust calibration, Human factors. 
 
1. INTRODUCTION 

 Idea generation is a fundamental stage in the design 
process [1] as it is critical in determining the performance of 
the final artefact [2]. In recent years, the advent of GenAI 
systems has provided designers with new avenues for 
enhancing the idea generation activity. These GenAI systems 

facilitate brainstorming and concept generation [3], stimulate 
creativity [4, 5], and expand design exploration [6]. As GenAI 
becomes more integrated into creative workflows, designers’ 
trust in these systems has emerged as a crucial factor, 
influencing both the effective use of AI systems and the 
integration of AI-generated outputs into the design process.  

Trust is defined as “the attitude that an agent will help 
achieve an individual’s goals in a situation characterized by 
uncertainty and vulnerability” [7, p. 51]. In the frame of 
creativity tasks, a well-calibrated trust reflects an accurate 
understanding of the AI’s capabilities, enabling designers to 
form an accurate mental model that guides their expectations. 
Without proper calibration, designers may experience 
undertrust, also called disuse—AI’s potential is underestimated, 
leading to missed usage opportunities—or overtrust, also called 
abuse—AI’s capabilities are overestimated, resulting in 
unrealistic expectations and deceiving results [8] Therefore, 
understanding how designers adjust their mental models and 
calibrate their trust in these GenAI systems is essential for 
optimizing the collaboration between humans and GenAI. 

This paper investigates the factors that influence trust 
calibration during interactions with a GenAI system in the 
context of conceptual human-AI co-design. This research seeks 
to answer the following question: What factors contribute to 
fluctuations in trust during human-GenAI collaboration, and 
how can these factors be leveraged to improve trust 
calibration in the context of Generative AI-assisted design? 
 
2. RELATED WORK 

 
2.1 Trust calibration process 

Lee and See [7, p.51] define trust as “the attitude that an 
agent will help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability”. They classify 
the basis of trust into three factors:  (1) performance-based 
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factors, which concern task efficiency, (2) process-based 
factors, which focus on consistency, and (3) purpose-based 
factors, where the system is perceived as honest and with 
benevolence motivation. Our work assumes that purpose-based 
trust factors are given, focusing instead on performance- and 
process-based elements that impact trust calibration. Previous 
research further distinguishes three categories of trust 
development: (1) dispositional trust, linked to an individual's 
general tendency to trust, (2) situational trust, that arises from 
the particular task context, and (3) learned trust, that develops 
while learning and using the system [8]. In this study, we 
control for participant backgrounds (profession and experience) 
and standardize the environment and tasks, as we primarily 
focus on learned trust. 

Trust calibration processes differ across human-human, 
human-automation, and human-AI interactions, shaped by the 
relationship and context of the interaction [9–12]. 
Human-human trust tends to build gradually, as individuals 
demonstrate trustworthiness through their behaviors [9]. 
Human-automation trust often begins with an overtrust, that 
then quickly declines if the system fails [10]. Human-AI trust 
combines both patterns: potentially showing early overtrust and 
then evolving as the AI meets user expectations [12, 11]. 

GenAI introduces unique factors in trust calibration. 
Unlike deterministic AI systems, GenAI relies on stochastic 
processes, producing varied outputs from the same input due to 
random seed-based sampling [13]. This inherent variability 
leads to fluctuating trust levels, as users encounter different 
outputs for identical prompts. Moreover, design tasks are often 
ill-defined and lack a singular optimizable solution [14], 
requiring evaluative criteria that go beyond performance to 
include aesthetic alignment, contextual relevance, and accuracy 
in meeting personal intent. These factors make trust in GenAI 
more susceptible to individual preferences and creative 
expectations. Additionally, the iterative and exploratory nature 
of design work means trust in GenAI is continually reassessed 
as designers refine their ideas across multiple iterations. This 
cyclical trust calibration process, where expectations evolve 
through repeated interactions with the AI, contrasts with the 
more linear trust development seen in other domains [15-18]. 

While prior work has explored trust calibration in 
human-AI collaboration [12, 17, 18], there remains a gap in 
understanding how trust fluctuates when designers interact with 
GenAI systems. Our study aims to fill  this gap by investigating 
trust factors during GenAI-assisted design. 

 
2.2 Generative AI for design process 

GenAI systems have found broad application in the early 
stages of design, enhancing ideation and fostering creativity 
across various fields, including architecture [3, 6], engineering 
design [19], product design [20], interior design [21], and 
graphic design [22]. Studies show that these systems enable 
faster and more extensive design exploration [23, 24]. Beyan 
and Rossy [25] further demonstrate that GenAI systems 
facilitate both abstract thinking and tangible results, allowing 
users to transcend the limitations of realism and the physical 

world, thus enabling the exploration of novel concepts [26]. In 
addition, GenAI has been integrated into the entire design 
production pipeline, with systems like those developed by 
Yonder [27] and Li [28] supporting the generation of floor 
plans, 3D forms, and facade renderings from text input, 
streamlining the design workflow, from ideation to production. 

Several GenAI models, including text-to-image, 
sketch-to-image, and hybrid systems, have been developed to 
support designers. Text-to-image systems like Midjourney, 
Stable Diffusion, and DALL-E are widely used in creative 
workflows. However, the literature points to several limitations: 
(1) the need for users to interrupt their workflow to generate 
images, (2) challenges in prompt engineering to achieve 
accurate results, (3) the desire for more controllable and precise 
images, and (4) the need for a more agile interaction with the 
system [3, 24, 25, 29, 6]. These issues, while technical, also 
relate to the challenges in engineering trust calibration within 
GenAI systems, as they affect user behavior and efficiency.  

As GenAI evolves, sketch-to-image and hybrid systems 
have emerged to address some of these limitations. For 
example, Zhang et al. [29] developed systems enabling 
architectural designers to generate renderings from sketches, 
providing greater flexibility and control. Other advancements, 
like Gao’s [30] tailored system, integrate design knowledge and 
allow for highly specific outputs from intuitive sketches. 
Hybrid systems, such as Sketch2Prototype [31] and Bologan 
[32], combine both text and visual inputs, allowing designers to 
incorporate non-verbal thinking into the design process. 

Despite the growing use of GenAI in design workflows, 
existing studies largely focus on the functionality of these 
systems and their impact on creativity, with limited attention 
given to how trust fluctuates during interactions with GenAI 
[24-26, 33]. The limitations identified in these systems—such 
as the need for prompt engineering and the challenge of 
maintaining a consistent workflow—are closely linked to trust 
calibration, yet few studies explore how designers adjust their 
trust when these challenges arise. Our study addresses this gap 
by examining how these limitations affect trust calibration in 
GenAI-assisted design. Specifically, we focus on a GenAI 
prototype that integrates both sketch and text inputs, offering 
enhanced flexibility and introducing new trust-related 
challenges. This approach provides valuable insights into 
improving human-GenAI collaboration and ensuring effective 
trust calibration throughout the design process. 
 
3. METHODS 

To explore the factors influencing trust fluctuations during 
interactions with a GenAI system, we observe architects in the 
conceptual design phase, co-designing with a 
custom-developed GenAI that integrates both sketch and text 
inputs, specifically created to study GenAI usage. 

 
3.1 Design task 

Architects were tasked with designing an in-law suite 
within a separate dwelling of an existing house. They were 
provided with a list of expected functional spaces (bedroom, 
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bathroom, clothing space, and desk space), as well as a target 
surface area of less than 20 square meters. The experiment’s 
task is subdivided into 4 successive sub-tasks explicitly 
delimited by a timer sound making the participant move to the 
following sub-task: (1) 10 minutes to explore the GenAI system  
interface and familiarize themselves with its functions while 
engaging in a thinking-aloud exercise to break the ice; (2) 20 
minutes focusing on the functional design (zoning and layout of 
the functional spaces); (3) 20 minutes dedicated to form design 
(volumetry, façade, and materiality); and (4) 10 minutes of free 
design time to revisit function-related aspects if necessary, try a 
final AI generation, and/or synthesize the design proposition. 

Choosing this architectural design task offers a unique 
opportunity to explore trust calibration in a complex and 
multifaceted context. Unlike engineering design tasks, which 
are often more objective and performance-driven, architectural 
design is inherently subjective and creative. It requires 
designers to make critical decisions about functionality, 
aesthetics, and spatial efficiency under tight constraints, while 
also navigating outputs that may be unexpected or misaligned 
with their creative intent—factors that can trigger fluctuations 
in trust. The open-ended nature of architectural design, with its 
trade-offs and iterative exploration, provides a rich environment 
for studying how designers adjust their expectations of AI. 
These elements introduce a more nuanced and dynamic context 
for investigating trust calibration in GenAI interactions. 
Additionally, the principles of design cognition and behavior 
are shared across disciplines, enabling us to derive valuable 
insights for engineering and system design. 

 
3.2 Participant population 

The study involved 12 graduate students in their final year 
of an architectural engineering program, each with a level of 
expertise comparable to professional designers in relation to the 
design task. In declaring their prior experience with GenAI 
systems, 3 individuals identified as novices and 9 as having 
limited experience (having experimented with GenAI but not 
using it regularly). The group consisted of 6 males, 6 females, 
and no individuals identifying as non-binary, with ages ranging 
from 21 to 25 years old. Although the study involved 12 
participants, each contributed one hour of rich dynamic task 
data, including extensive think-aloud comments and video 
recorded behavior, which will be systematically hand-coded or 
detailed analysis. This in-depth data from each participant 
ensures a rich and sufficient dataset for our analysis of GenAI 
trust calibration. 

 
3.3 Generative AI system  

The system  used for co-design in this experiment was 
developed internally to support various research initiatives on 
GenAI usage. Detailed descriptions of the system  have been 
provided in a previous paper [34]. This system includes an 
interface that supports GenAI-assisted co-design, integrating 
various  models to produce images across different modalities.  

The system  operates on a tablet with a digital pencil and a 
bluetooth keyboard. The interface of the system  (Figure 1) 

presents a sketching space on the right half of the screen, 
supporting fundamental sketching functionalities. This 
sketching space also serves as the input prompt when 
prompting image generation in sketch mode. The central 
column displays additional prompting parameters: specifying 
the type of representation sketched (facade - interior - floor 
plan) to help the model understand, specifying the desired 
generation type (rendering the sketched idea - inspire an 
alternative idea based on the sketch and on a chosen reference 
image), and specifying the desired image output (realistic for 
concrete proposition- sketched for more abstract proposition). 
On the top of that central column, the user can switch to a text 
input mode, in which a text box opens and allows the user to 
enter a textual prompt. 

A “Generate Image” button triggers the image generation 
process. On the left side of the screen, the system displays three 
generated images, from which the designer can either choose to 
trash, add to the project mood board, or let live in the 
generation library. Both the generation library and the project 
mood board can be accessed via buttons on the top left corner 
of the screen. 

The AI models used for image generation were selected for 
their high performance in architectural design tasks. 
Information about the design brief is pre-fed into the prompting 
architecture to ensure that the generated images align with the 
design topic and scale. Fixed generation instructions further 
ensure that key elements (such as material, furniture, and style) 
are accurately translated into the generated images. 

 

 
FIGURE 1: INTERFACE OF THE GEN AI SYSTEM  USED 

 
3.4 System’s capacity  

The system employed ChatGPT 4.0 for sketch 
interpretation, incorporating fixed instructions related to the 
design brief, and then generated images using Stability (SD3 
Large). Further details on the system architecture can be found 
in our earlier work [34]. Preliminary testing demonstrated the 
system’s strong capability in producing renderings aligned with 
the design brief. Figure 2 illustrates outputs from our study. 
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FIGURE 2: ILLUSTRATION OF THE SYSTEM'S CAPACITY 

 
3.5 Data collection 

Data was collected through three channels: (1) verbal 
think-aloud protocols, where participants articulated their 
design rationale, intentions, and any fluctuations in trust as they 
interacted with the GenAI system ; (2) a camera recording the 
design session to capture a backup record of the experiment and 
provide context for interpreting all collected data, including any 
disruptions; and (3) an interface log that recorded every action 
taken by the participants, such as generating new images, using 
text or sketch-based prompts, selecting inspiration images, 
exporting images to the mood board, and deleting images, with 
corresponding time stamps. In total, 12 hours of Human-GenAI 
co-design were recorded, capturing 144 image generation 
interactions and 896 trust-related commentary instances. 
 
 
 

3.6 Data coding 
The primary objective of the analysis is to identify factors 

contributing to fluctuations in designers' trust during their 
interactions with the GenAI system. These instances of trust 
fluctuation were operationally defined as a moment in which a 
user's trust in the GenAI system appeared to increase or 
decrease, as inferred from their actions and accompanying 
verbalizations. Guided by actions commonly associated with 
trust-related responses in human-computer interaction literature 
[35, 36] we focussed on the following actions: (i) generating 
new images; (ii) exporting an image (indicating satisfaction); 
(iii) deleting an image (indicating dissatisfaction); and (iv) 
modifying the prompt to regenerate an image. 

For each action, we analyzed the think-aloud to determine:  
(i) whether the generated image aligned with the user's mental 
model; (ii) if trust fluctuated (increased or decreased) as a 
result–we considered trust to be influenced when the 
think-aloud revealed a shift in confidence, satisfaction, or belief 
in the system's capabilities or usefulness; and (iii) which 
specific element of the gap between the user's expectations and 
the generated image contributed to the change in trust.  
We applied incremental qualitative coding, informed by the 
grounded theory methodology coding principles proposed by 
Lejeune [37], to categorize the aspects of expectation gaps into 
specific factors. Once all instances of trust fluctuation were 
identified (both increases and decreases, along with the 
corresponding factors), we grouped these factors into broader 
categories of determinants that influence trust in GenAI.  

The initial coding was conducted by a primary researcher, 
with a second researcher independently coding a stratified 20% 
sample. Inter-rater agreement exceeded 90%, and discrepancies 
were resolved through discussion, ensuring high reliability of 
the coding scheme. 

 

 
FIGURE 3: DATA CODING EXAMPLE 
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Figure 3 illustrates the coding process. At timestamp 
09:35, the user performed a relevant action (image generation), 
prompting us to record think-aloud data. We extracted 
comments on the generated images, focusing on deviations 
from user expectations. These differences were then 
categorized into factors, sticky notes in the figure. 

 
3.7 Measures 

For each factor identified (Section 3.6), we count the 
number of participants which mentioned this factor, the number 
of comments of this factor which were mentioned by each 
participant, and count the number of positive and negative 
comments separately. The following parameters are defined to 
access the  detailed properties of these factors. 

 
3.5.1 Sentiment Direction (SD) 

Sentiment Direction (SD) quantifies the extent to which a 
factor is associated with trust increase or decrease. The scale of 
SD is [-1,1], where a positive value indicates a stronger 
association with trust increase, with higher scores reflecting a 
greater positive sentiment, and vice versa for negative values. 
SD is computed as the average of individual participant 
sentiment scores ( ), which normalizes sentiment by 𝑆𝐷

𝑖
(𝑓)

considering the proportion of positive and negative comments 
within the factor, ensuring that a higher presence of positive 
comments results in a positive score, while a higher presence of 
negative comments results in a negative score.                             
 
For each participant i on factor f: 

                            (1) 𝑆𝐷
𝑖
(𝑓) = (

𝑃
𝑖
(𝑓)  −  𝑁

𝑖
(𝑓)

𝑃
𝑖
(𝑓)  +  𝑁

𝑖
(𝑓) ) 

For factor f: 

                       (2) 𝑆𝐷(𝑓) =  1
𝑁 (

𝑖=1

𝑁

∑ 𝑆𝐷
𝑖
(𝑓))

Where: 
 Individual participant sentiment score on factor f. 𝑆𝐷

𝑖
(𝑓):

: The positive comments on factor f by participant i. 𝑃
𝑖
(𝑓)

: The negative comments on factor f by participant i. 𝑁
𝑖
(𝑓)

 
3.5.2 Sentiment Agreement (SA) 

Sentiment Agreement (SA) quantifies the degree of 
variability in participants’ sentiment toward a given factor. A 
high SA indicates strong divergence in opinions, suggesting 
that participants have conflicting views on whether the factor 
contributes to trust increase or decrease. Conversely, a low SA 
suggests general consensus, indicating that most participants 
share a similar sentiment regarding the factor. The scale of SA 
is [0,+ ). SA is computed as the standard deviation of ∞
individual participant sentiment scores ( ). 𝑆𝐷

𝑖
For factor f: 

          (3) 𝑆𝐴(𝑓) =  1
𝑁

𝑖=1

𝑁

∑ (𝑆𝐷
𝑖
(𝑓) − 𝑆𝐷(𝑓))2

 
3.5.3 Importance Agreement (IA) 

Importance Agreement (IA) quantifies the degree of 
variation in how much attention participants allocate to a given 
factor. A high IA indicates that some participants place 
significant emphasis on the factor while others barely mention 
it, suggesting an uneven distribution of importance. Conversely, 
a low IA suggests that participants consider the factor with 
similar levels of attention, indicating its consistent relevance 
across users. The scale of IA is [0,+ ). IA is computed as the ∞
standard deviation of the proportion of comments participants 
dedicates to the factor ( ), relative to their total comments. 𝐼

𝑖
(𝑓)

 
For each participant i on factor f: 

         (4)  𝐼
𝑖
(𝑓) =  𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 𝑏𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖 𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 𝑏𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖

For factor f: 

           (5) 𝐼𝐴(𝑓) =  1
𝑁

𝑖=1

𝑁

∑ (𝐼
𝑖
(𝑓) − 𝐼

𝑚𝑒𝑎𝑛
(𝑓))2

Where: 
: Part of participant i’s total comments about factor f. 𝐼

𝑖
(𝑓)

 
4. RESULTS 

This section first presents the key factors influencing trust 
fluctuations, categorized into six thematic categories based on 
the aspects of the system’s capabilities they reflect. We then 
analyze, category by category, the factors showing higher 
impact on trust fluctuation, using Sentiment Direction (SD) and 
Sentiment Agreement (SA) measures, and the factors more 
frequently mentioned by the users, in terms of their total 
occurrence count and Importance Agreement (IA). 

 
4.1 Factors Influencing Trust Fluctuation  

Answering the first part of our research question, “What 
factors contribute to fluctuations in trust during human-GenAI 
collaboration?”, we firstly identified an extensive list of factors 
that influenced trust. Through further analysis and synthesis, 
we narrowed these down into six broad categories, each 
representing a distinct dimension of system capabilities that 
inform user trust calibration (Table 1).  

The Intent Alignment category captures the GenAI’s 
ability to interpret user input correctly and maintain the 
intended design intent. The Design exploration category 
relates to the GenAI’s capacity to expand design possibilities 
and encourage creative exploration. The Aesthetics category 
focuses on the visual and perceptual qualities of 
GenAI-generated outputs. The Plausibility category assesses 
the realism and feasibility of GenAI-generated outputs. The 
Iterative Adaptability category evaluates the GenAI’s 
responsiveness to iterative modifications.  Finally, the 
Consistency category addresses the GenAI’s ability to maintain 
stability in its generated outputs 
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TABLE 1: TRUST FLUCTUATION CATEGORIES AND RESPECTIVE FACTORS. 
 

Intent Alignment  Design Exploration 

Symbol Interpretation Correctly understanding symbols and incorporating 
the corresponding intention 

 Unexpected Design 
Directions 

Generating unexpected or unmentioned ideas 

Completeness Meeting all the requirements in the prompt  Generation Diversity Generating a variety of outputs  

Composition Adherence Maintaining spatial arrangements  Inspirational Value  Generating outputs that spark new ideas  

Conceptual Integrity Preserving the “spirit” of the design  System Fixation Tendency of repeating elements or styles 

Element Fidelity Accurately incorporating key elements and their 
features from the sketch 

 Alternative Solutions Providing alternative solutions for the same 
function 

Scale Accuracy Ensuring design elements have appropriate size and 
volume 

 Aesthetics 

Viewpoint Selection Choosing a viewpoint that displays the key elements  Material Accuracy Material choices aligning with design intent. 

Spontaneous Components Objects appearing without logical reasoning 
cohesive to the intent 

 Atmosphere Match Matching emotional or immersive abstract 
quality for the generated space 

Implicit Property 
Interpretation 

Correctly inferring and incorporating implicit 
properties independently of what is sketched 

 Aesthetic Quality 
 

Ensuring the visual appeal and artistic 
coherence of the generation 

Plausibility  Iterative Adaptability 

Constructability Proposing a design that is structurally feasible for 
real-world construction 

 Iterative Adaptability Refining and evolving previous generations 
based on user input 

Functional Usability Ensuring that generated elements serve their 
intended practical function 

 Consistency 

Adherence to Design 
Conventions 

Aligning with established architectural principles 
and design norms 

 Coherence Consistency Sustaining a stable level of design coherence 
across multiple generations 

 
4.2 Analysis of Factors in Relation to Occurrence 
and Sentiment Direction 

Figure 4 illustrates each factors’ Sentiment Direction 
(SD), Sentiment Agreement (SA), Average Occurrence, and 
Importance Agreement (IA). 

 
4.2.1 Intent Alignment 

Four factors in this category, Conceptual Integrity, 
Completeness, Element Fidelity, and Symbol Interpretation, 
are among those with the highest occurrence. 

Conceptual Integrity and Completeness exhibited both 
high occurrence and high IA values, indicating variability in 
how frequently participants commented on these factors, with 
some referencing them consistently while others rarely 
mentioned them. Observations from the user study suggest 
that participants who comment on Conceptual Integrity 
frequently tended to mention Completeness less, and vice 
versa. Participants who emphasized on Conceptual Integrity 
had a strong guiding idea or thematic direction they wanted 
the system to preserve, expressing positive sentiment when it 
captured their vision and negative sentiment when it deviated. 
In contrast, those focused on Completeness sought to include a 
comprehensive set of design elements in a single generation, 
responding positively when most components were present. 
Both Conceptual Integrity and Completeness have a relative 
neutral sentiment direction.  

Element Fidelity was another frequently occurring factor, 
with participants expressing positive sentiment when the 
system accurately integrated key design elements from their 
input and negative sentiment when it failed to do so. This 
factor also had a slightly positive but mostly neutral sentiment 
direction, as instances where participants observed expected 
elements were nearly as frequent as those where missing 
elements led to trust decrease. 

  Symbol Interpretation is among both the highest 
occurrence factors and those associated with the most negative 
sentiment. Participants relied on universal symbols (e.g., desk, 
window, wardrobe) to convey design intent, with trust 
decreasing when the GenAI failed to interpret and incorporate 
these symbols accurately. This factor exhibited high SA, 
reflecting mixed experiences—some participants found the 
system effectively aligned with their symbolic input, while 
others encountered frequent misinterpretations. 

The remaining factors in this category, Composition 
Adherence and Scale Accuracy, exhibited moderate 
occurrence and a neutral sentiment direction. Scale Accuracy 
had a high SA, as some participants considered the size of 
elements crucial, while others paid little attention to it. 

Viewpoint Selection, Spontaneous Components, and 
Implicit Property Interpretation were less frequent and 
typically relevant to only specific design intents. For example, 
Viewpoint Selection was important when the perspective 
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influenced the sketch’s presentation. Implicit Property 
Interpretation mainly occurred with participants perceiving 

human-like qualities in the system (discussed in 5.4.2) and 
became more common in the later stages of the experiment 

 

 
FIGURE 4: FACTORS’ SENTIMENT DIRECTION, SENTIMENT AGREEMENT, OCCURRENCE AND IMPORTANCE AGREEMENT 

 
4.2.2 Design Exploration 

This category includes factors exhibiting highly polarized 
sentiment directions. Unexpected Design Direction, 
Inspirational Value, Alternative Solution, and Generation 
Diversity have positive SD.   

Inspirational Value increased trust when the system stayed 
within the participant’s intended design direction but introduced 
new ideas which implement the original ones. For instance, one 
participant, aiming to generate a rounded roof, noted how “it 
gives me inspiration to push the form to the limit—imagine a 
dome-shaped facade” (P4).  

Unexpected Design Direction increased trust when 
participants observed the GenAI introducing relevant yet 
unconsidered elements. For instance, when aiming to design a 
fancy terrace, the system generated a set of outdoor lightings 
not mentioned in the sketch. Alternative Solutions increased 
trust by presenting different methods that still addressed the 
intended design problem. For instance (Figure 5), rather than 
producing the requested study desk and chairs, the system 
generated a sofa and side table, which served a similar function 
of supporting reading activities in the library. Generation 
Diversity boosted trust by offering a range of diverse but 
coherent design solutions aligned with participants’ intentions 
in one generation. However, Unexpected Design Direction, 
Alternative Solution and Generation Diversity all exhibited 
high SA values,  reflecting diverse sentiment—some viewed 
unexpected elements as beneficial, while others perceived them 
as unintentional deviations. 

 

 
FIGURE 5: EXAMPLE OF TRUST INCREASE DUE TO 
ALTERNATIVE SOLUTION 
 

In contrast, System Fixation displayed a strong negative 
SD, reducing trust when the system repeatedly generated 
similar components with limited variation. Its moderate SSD 
and occurrence suggest that participants largely agreed on its 
negative impact, though it was not an uncommon phenomenon. 

 
4.2.3 Aesthetics  

Aesthetic Quality and Atmosphere Match were strongly 
associated with trust increases, often highlighted when 
GenAI-generated outputs offered significant visual appeal or 
successfully captured participants’ intended ambiance. 
Aesthetic Quality had a low SA, indicating broad agreement on 
its positive impact. However, Atmosphere Match showed a 
moderate SA, reflecting varied opinions. While many 
participants appreciated the generated atmosphere, some found 
it unsuitable for their design goals.  
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Material Accuracy appears a neutral sentiment. It leads to 
trust increase when participants find that the material applied in 
the generation fits in the design intent and atmosphere; 
however, people also criticize it when their prompted material 
was not presented or didn’t reach their expectation. 

 
4.2.4 Plausibility 

The factors in this category primarily reduce trust. 
Adherence to Design Conventions and Functional Usability 
led to trust decrease when participants found GenAI outputs 
inconsistent with standard practices or functionally impractical. 
Both exhibited moderate-to-high SA, indicating that 
participants mostly commented on design failures while rarely 
acknowledging successful adherence or functionality. For 
example (Figure 6), one participant requested an atrium in the 
middle of a house but received an indoor atrium, which 
typically conflicts with common architectural norms. 
Constructability had a mildly negative sentiment, as 
participants often criticized designs deemed unrealistic yet 
occasionally praised those that appeared industry-ready. All 
three factors had a middle-to-low occurrence overall. 

 

 
FIGURE 6: EXAMPLE OF TRUST DECREASE DUE TO POOR 
ADHERENCE TO DESIGN CONVENTIONS 

 
4.2.5 Consistency 

Coherence Consistency often led to trust decreases when 
participants observed inconsistencies across generations, 
making the GenAI appear unreliable. One participant remarked, 
“It is crazy that it generated a tree in the middle of the house 
before, but now it cannot reproduce one” (P10). This factor had 
relatively low occurrence. 
  
4.2.6 Iterative Adaptability 

Iterative Adaptability showed a mild sentiment (SD) and 
moderate occurrence, reflecting its relationship to human-like 
interaction, which is further discussed in Section 5.4.2.  
 
5. DISCUSSION 

This section explores explanations for the observed 
variations in sentiment and factor occurrence, offering insights 
into why certain factors influence more significantly trust 
fluctuations. Based on our findings, we propose design 
principles for improving GenAI systems in conceptual design. 
Finally, we discuss the impact of perceived human-like 
qualities on trust calibration. 

5.1 Hypothesizing the rationale behind the results 
As sections 4.2 and 4.3 identified the most polarized 

sentiments and most frequently occurring factors, this section 
examines potential underlying causes and outlines design 
principles to enhance GenAI systems for conceptual design. 

We posit that Aesthetic Quality and Atmosphere Match are 
more strongly associated with positive sentiment due to two 
key reasons. First, Stability AI is trained on publicly available 
online images, many of which are curated for showcasing 
pleasing aesthetics as talked before. This likely biases the AI 
towards generating highly polished and visually appealing 
outputs. Second, designers are inherently visual thinkers, 
trained to be highly sensitive to aesthetic qualities and spatial 
ambiance. As a result, they exhibit heightened positive 
responses when the GenAI produces visually striking outputs or 
align with the intended atmosphere of their design concept, 
which in turn amplifies these factors mentioning frequency. 

Another set of factors with high positive sentiment 
includes Inspirational Value, Unexpected Design Direction, and 
Generation Diversity. The design brief stated that the primary 
goal of the session was to explore ideas and seek inspiration for 
a design task. As a result, we hypothesize that participants were 
open to new design possibilities. The strong positive sentiment 
associated with these factors supports the notion that GenAI 
can effectively stimulate creativity in design. However, the high 
SSD score indicates significant variation in how participants 
perceived inspiration. This suggests that the boundary between 
an inspiring suggestion and an unrelated or irrelevant 
generation is inherently subjective. While some participants 
embraced unexpected outputs as sources of inspiration, others 
perceived them as deviations from their intended design goals, 
leading to more polarized reactions. 

Factors highly associated with negative sentiment include 
Adherence to Design Conventions, Functional Usability, and 
Coherence Consistency, which were frequently mentioned 
when participants encountered “weird images”. We hypothesize 
that participants generally do not comment on realistic or 
feasible generations when such qualities are consistently met. 
Instead, they tend to verbalize their thoughts only when a 
generation appears unrealistic, impractical, or inconsistent with 
design norms. This selective attention could explain why these 
factors are predominantly linked to negative sentiment, as they 
might be more noticeable in cases where the GenAI fails to 
meet expected design standards rather than when it performs as 
anticipated. This likely reflects a common reporting bias, where 
violations of baseline expectations prompt explicit feedback, 
while successful or expected outputs go unremarked. The 
reason why Symbol Interpretation is associated with negative 
sentiment will be further discussed in Section 5.4. 

The three most frequently occurring factors—Conceptual 
Integrity, Completeness, and Element Fidelity—all belong to 
the Intent Alignment category. We hypothesize that this is 
because understanding whether the GenAI correctly interprets 
user intent and whether it can generate outputs that align with 
the designer's expectations is the primary concern when 
adopting a GenAI system. Moveover, these factors are also 
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among the most immediate and straightforward to evaluate. 
Unlike factors such as Aesthetic Quality, which may not be a 
focus in every generation, Conceptual Integrity, Completeness, 
and Element Fidelity can be assessed consistently across all 
outputs. For many participants, these factors likely serve as a 
baseline expectation when engaging with the GenAI, forming 
the foundation upon which trust in the system is established. 

These findings suggest that while traditional trust models 
provide a valuable foundation, trust in GenAI systems requires 
additional, design-specific dimensions. Several of the 23 factors 
align with known dimensions like reliability, predictability, and 
transparency [7-8, 35-36], while others—such as visual 
coherence with users’ mental models, interpretability of 
abstract prompts, and responsiveness to iterative 
refinement—are unique to generative design contexts. 

 
5.2 Design principles for GenAI for design inspiration 

A clear pattern emerges from the analysis: factors from the 
Intent Alignment category emerged as the most impactful, 
while those linked to positive sentiment primarily stemmed 
from Design Exploration and Aesthetics categories, and 
negative sentiment was most often associated with the 
Plausibility category. Based on these findings, we propose the 
following principles for improving user experience and design 
inspiration when designing new GenAI systems. 

Prioritize intent alignment: Ensure the system accurately 
interprets and reflects the designer’s input, particularly in terms 
of conceptual integrity. This fosters trust by making the 
generated outputs  relevant, aligned, with the designer's vision. 

Improve completeness: Ensure the system generates both 
focal elements and supporting components of a design in a 
coherent manner, promoting a more integrated design process. 

Enhance aesthetic quality: Focus on creating outputs that 
align with the desired ambience and exhibit high aesthetic 
appeal. This positively impacts user creative exploration. 

Support design exploration : Offer diverse, varied 
suggestions and avoid repeating similar outputs and fixation. To 
stimulate further creativity, augment the potential for 
inspiration that comes from generative surprises. 

Ensure plausibility: Align the system’s outputs with 
common design conventions, verify feasibility, and maintain 
coherence across iterations. This helps mitigate negative 
reactions and enhances user confidence in the system’s outputs. 
Balance the plausibility and the inspirational value based on the 
designers' needs to push beyond standard conventions if they 
search creative inspiration while ensuring enough realism. 

This answers our second research question “How can these 
factors be leveraged to improve trust calibration in the context 
of GenAI-assisted design?” 
 
5.3 Participants' perception of human-like factors and 
their impact on trust calibration 

During the user study, participants frequently attributed 
human-like characteristics to the system. 10 out of 12 
participants made remarks such as “It likes this idea”, “It really 
likes wooden doors”, or “It respects my composition a lot”. 

These observations suggest that certain system behaviors led 
participants to perceive the GenAI as exhibiting preferences, or 
intent, similar to human interaction. 
 
5.4.1 Factors contributing to human-like perception 

We hypothesize that the randomness in generation 
quality—across categories such as Plausibility, Intent 
Alignment, Aesthetics, and Design Exploration—leads 
designers to perceive the GenAI as more human-like, mirroring 
human communication rather than a deterministic machine. 
This variability in generation quality is indeed alike real-world 
design negotiations, where differences in interpretation arise 
between designers and stakeholders. Participants seemed to 
expect the GenAI to process sketches similarly to a human. 

For example, in Figure 7, a participant intended to place a 
tree inside a house, but the system exhibited variability in its 
response, generating one facade with no tree, another with a 
tree behind a window, and a third with a tree integrated into the 
facade, stylized with a hat-like shape. This inconsistency 
resembled the way humans might interpret the same conceptual 
input differently, reinforcing the perception of the GenAI as an 
adaptive and interpretive agent rather than a rigid system. 

 
FIGURE 7: HUMAN-LIKE INTERPRETATION RANDOMNESS 

 
Another factor contributing to the human-like perception of 

the GenAI was symbol interpretation. Participants developed 
greater trust in the GenAI when they observed that it could 
correctly interpret abstract symbols commonly used in design 
workflows—an ability typically associated with human 
designers. For instance, in Figure 8, a participant used blue 
outlines to indicate glass and diagonal lines to represent 
reflective lighting. The GenAI successfully incorporated these 
symbolic cues into the rendering, reinforcing the participant’s 
perception of human-like interaction in the design process. 

 
FIGURE 8: HUMAN-LIKE SYMBOL INTERPRETATION 
 
5.4.2 Impact of human-like interaction on trust calibration  

We observed that participants generally experienced a 
change in communication strategy when they first perceived 
human-like interactions with the system. This perception led 
them to adopt communication approaches similar to those used 

 9 © 2025 by ASME 



 

with human designers. In Lee and See’s theory [7], trust 
between humans and machines tends to decline immediately 
when imperfections are noticed. In contrast, trust in 
human-to-human relationships erodes gradually over multiple 
instances of unmet expectations [9]. We observed that the 
perception of human-like interaction in GenAI appears to shift 
the trust calibration process closer to human-to-human trust 
dynamic, where participants exhibited more patience and 
adaptability in refining their interactions with the system, which 
results in a longer calibration process, as trust does not 
immediately decline after a single unsuccessful generation.  

For example, in Figure 9, a participant intended to use a 
closet or cabinet to separate the bedroom and bathroom areas. 
In the first two rounds, the generated outputs did not align with 
her expectations. However, instead of disengaging, she adjusted 
her explanation, and in the third round, the first generated 
image successfully reflected her intent. This iterative process 
suggests that the perception of human-like interaction 
encouraged participants to persist in refining their prompts 
rather than dismissing GenAI’s capabilities after initial failures 

 

 
FIGURE 9: LENGTHENED TRUST CALIBRATION PROCESS 
 

Additionally, we observed that when participants perceived 
human-like qualities in the GenAI, they began expecting the 
system to interpret implicit meaning, rather than providing 
exact sketches of their intent—a behavior similar to discussions 
with human designers. For instance, in Figure 10, a participant 
aimed to generate an atrium at the center of a house. After the 
first unsuccessful attempt, instead of assuming that the GenAI 
lacked the capability to generate an atrium, he interpreted the 
failure as the system hiding the atrium behind other elements. 
Consequently, he adjusted his prompts in the next two 
generations, emphasizing that the atrium should be clearly 
visible. In the final iteration, although the atrium should not 
have been visible from the chosen viewpoint due to obstructing 
walls, he still included it in the sketch, believing that the system 
would understand his intent beyond literal representation, and 
in the end he finally got satisfying generations.  

 

 
FIGURE 10: HUMAN-LIKE RESULTING EXPECTATION 
 

The perception of human-like interaction also explains why 
the factor Symbol Interpretation is associated with negative 
sentiment. Initially, participants relied on universal symbols to 
communicate their design intent. However, as they began 
expecting the system to understand implicit meanings, their 
symbolic sketches became more complex and interpretative, 
increasing the difficulty of accurate interpretation—similar to 
the atrium case discussed earlier. As a result, participants 
experienced greater frustration when the system failed to infer 
their intent correctly, leading to negative sentiment due to less 
likelihood of achieving desired outcome. 

 
6. CONCLUSION 

This study examined the factors influencing trust 
calibration in human-GenAI co-design, based on 12 hours of 
co-design sessions and 896 trust-related comments. We 
identified 23 key factors contributing to trust fluctuation, 
highlighting key levers for improving trust calibration: 
prioritizing intent alignment, ensuring aesthetic quality, and 
addressing plausibility while keeping inspirational quality and 
avoiding fixation. Additionally, the study revealed that 
variability in generation quality and effective symbol 
interpretation enhanced the perception of GenAI as more 
human-like, fostering longer calibration periods and greater 
patience with errors. While having potentially limited external 
validity due to the 12 participants, these findings present a high 
internal validity and provide valuable and actionable insights 
for designing GenAI systems that better integrate with 
designers' workflows and build trust. Future work will further 
explore the impact of human-like AI interaction on the trust 
calibration, using targeted protocols, as this could have major 
implications. We will also examine how dispositional and 
situational trust evolves in real-world workflows by conducting 
respectively pre/post tool implementation assessments and task 
randomization. 
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