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ABSTRACT
Knowledge collection, extraction, and organization are crit-

ical activities in all aspects of the engineering design process.
However, it remains challenging to surface and organize design
knowledge in a scalable and accessible manner given it often
contains implicit or tacit dimensions that are difficult to capture.
Knowledge graphs have been explored to address this issue but
have been primarily semantic in nature in engineering design
contexts, typically focusing on sharing explicit knowledge. In
this work, we explore how knowledge graphs could offer a mech-
anism to organize experiential design knowledge and afford its
use in complex queries. We develop a searchable knowledge
graph based on data from a previous virtual product teardown
activity with 23 professional designers. Examples of the un-
derlying data within this corpus include descriptions of product
components and their purpose as well as participant-determined
relationships between these components. To structure the knowl-
edge graph, we develop a schema that uses its constituent nodes
and edges to represent design knowledge, relational informa-

∗Address all correspondence to this author.

tion, and properties such as the node author’s discipline and
the node’s function-behavior-structure classification. We pro-
pose and demonstrate two user-driven graph search types - in-
tentional and exploratory - and four data-driven graph search
methods, and illustrate through two extended examples their po-
tential to reveal insights and patterns from teardown knowledge.
These findings suggest that knowledge graphs can be a valuable
approach to organizing and availing experiential design knowl-
edge emerging from complex design activities.

1 INTRODUCTION
Design can be considered a learning process, in which

knowledge is collected, synthesized, and organized to achieve
an outcome [1–3]. Representations of knowledge, its organiza-
tion, and transformation underpin foundational models of the en-
gineering design process, such as the function-behavior-structure
(FBS) model and C-K design theory [4,5], but the importance of
knowledge in design is not simply theoretical. By Robinson’s
accounting, engineers spend more than 55% of their work hours
acquiring or sharing knowledge [6], making knowledge organi-
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zation and structuring a critical element of engineering design
practice. This is perhaps most evidenced from the importance
of knowledge structuring, organization, and sharing in organiza-
tions, where it is considered a critical strategic focus and a basis
of competitive advantage [7, 8].

Efforts to codify and structure engineering knowledge
through knowledge graphs (KGs), like TechNet, have been very
successful. However, semantic approaches like TechNet’s re-
quire well-structured semantic data [9–11], what may be consid-
ered explicit knowledge, or knowledge that is readily expressible
and transferable [12]. However, much of design knowledge re-
sults from design activities, such as prototyping or teardowns;
knowledge resulting from these activities is not easily structured
in an explicit manner. Such knowledge may be considered im-
plicit, meaning that it exists internally to a designer, or tacit,
meaning that it is not readily expressed externally [12]. Much of
design knowledge, then, can be considered a result of what the
Kolb Learning Model describes as ‘experiential learning’ [13],
where tacit knowledge can be conveyed practically. Combin-
ing the experiential nature of design activity data with the or-
ganizational advantages of a KG could address key challenges
in knowledge structuring and sourcing at both the designer and
organization levels.

In this work, we explore how we might adapt KGs to cap-
ture and avail complex knowledge sourced from real engineering
design activities. We seek to explore three research questions:

R1. How can we incorporate experiential design knowledge
into accessible and scalable knowledge representation sys-
tems?
R2. What modes of interaction do knowledge systems de-
scribing experiential design enable for designers?
R3. How can knowledge systems describing experiential
design knowledge support learning and data exploration?

To address these questions, we develop a KG based on ex-
periential data drawn from real design activity: virtual product
teardowns conducted by 23 professional designers. Product tear-
downs are a widely-used technique in reverse engineering to sur-
face nuanced knowledge about a product’s components, archi-
tecture and affordances [14–17], and here serve as an example of
a heavily experiential design activity that could be modeled by
a KG. With the KG organizing teardown data, we illustrate two
user-driven search modes in extended examples and discuss the
latent insights and patterns they can reveal. We also highlight
four data-driven search modes that can afford insight develop-
ment. The main contributions of this work are (1) presenting a
novel KG grounded in experiential design data and (2) demon-
strating scalable search interactions across this graph.

In this paper, we first review related work that contextualizes
our study (Sec. 2). We then describe our research methodology
(Sec. 3), and present and discuss results from our study, includ-
ing limitations and future work (Sec. 4).

2 RELATED WORK
In this section we review related work on knowledge organi-

zation and structuring in design, KGs in engineering design, and
product teardowns.

2.1 Knowledge Organization in Complex Design Ac-
tivities

Engineering design and innovation has been described as
a learning process [1, 16], with a designer’s ability to incorpo-
rate and structure knowledge essential to shaping design out-
comes [18], frame meaningful design problems [19], and connect
design activities to design intent [2]. Knowledge in the design
process can take many forms: from design briefs to customer in-
teractions to institutional technical knowledge [3]. How knowl-
edge is organized during the design process shapes not just the
process itself and its immediate outcomes, but its transition to a
finished product, e.g. through product architecture [20].

In order to describe how designers engage with and organize
knowledge, an ontology describing design knowledge is neces-
sary. A foundational framework in understanding knowledge
during the design process is the Function, Behavior, Structure
(FBS) model, which combines an ontology for understanding de-
sign knowledge [21, 22] with consideration of a designer’s cog-
nition and experience. The FBS framework has been applied
to manage knowledge in a diverse range of activities across the
engineering design process, from information extraction from
patent databases [23] to defining product requirements [24].

Many studies have sought to describe knowledge structuring
and organization during a variety of engineering design phases,
from research to prototyping and manufacturing [18, 25–28].
Damen and Toh observed three modes of organization by pro-
fessional designers during ideation: clusters, relations, and nests
[25], and connected the mode of organization to aspects of de-
sign ideation results. How designers develop relationships be-
tween knowledge appears to shape the outcome of design activ-
ity. Previous work has explored knowledge and learning gener-
ated from reverse engineering [29]. While our earlier work de-
scribed how designers organize and structure knowledge during
teardowns [30], we did not explore how such knowledge could
subsequently be organized, accessed, and queried to identify crit-
ical patterns and insights in a given engineering design knowl-
edge base.

More recent work from Damen and Toh presented the In-
formation Archetype Framework, which described the types
of knowledge surfaced across the design process, and how
they manifest in practice with software engineers and design-
ers [25, 31]. Three concepts from Damen and Toh’s work are
important to our discussion of knowledge organization, which
the authors render as balance between two levels that exist in
tension. First, information source describes whether information
is internal to the designer or sourced externally. Second, general-
ity of information describes whether information is sourced from
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across disciplines or from a designer’s own discipline. Lastly,
effectuation of information describes the utilization of existing
knowledge and knowledge networks (inclusive people) versus a
causal engagement with the end goal of a proposed design ac-
tivity, and utilization of any knowledge necessary to achieve it.
Damen and Toh’s research suggests that designers’ ability to nav-
igate tensions between these knowledge archetypes, what the au-
thors call designers’ trajectories, is critical to their ability to prac-
tice design.

Design of increasingly complex systems is performed in
teams, and beyond how individual designers structure and or-
ganize knowledge, an understanding of how organizations struc-
ture and transfer knowledge is essential. We focus our discus-
sion here on organizational knowledge related specifically to en-
gineering design, as the broader topic has been reviewed in detail
elsewhere [32]. McMahon et al. described a key aspect of knowl-
edge organization behavior of firms as codification, where infor-
mation is stored and shared digitally across the organization, as
opposed to personalization, in which knowledge is mediated by
personal relationships. One key way of distinguishing types of
design knowledge is by its accessibility: explicit knowledge can
be articulated externally and easily transferred; implicit knowl-
edge exists internally to a designer and is typically involved in
application; and tacit knowledge cannot be readily expressed ex-
ternally, typically gained experientially [12]. Polyani and Sen
stated that tacit knowledge cannot be explicitly shared [33], but
Rust argued that design activities, like prototyping, can actually
facilitate transfer of tacit knowledge to the explicit [34]. Knowl-
edge may be further distinguished by content: Wallace et al.
identified product design and design process knowledge as sepa-
rate categories [35]. Organizations require effective ways to sur-
face relevant information from large knowledge bases [36, 37], a
challenge approached through low-intent vs high-intent data dis-
covery methods [38]. These methods support engineers who both
have specific information in mind as well as those who are un-
sure what they are searching for and need some guidance. Nav-
igating, sharing, and managing knowledge is a critical source of
competitive advantage for firms today [7, 8].

This study extends from previous research on design knowl-
edge organization in two ways. First, we study how product and
process knowledge generated by professional designers can be
organized into a relational KG structure, affording various modes
of inquiry representative of knowledge searches. Second, we
probe these modes of inquiry by using the FBS ontology, de-
signer role data, and frequencies of links as starting points. We
illustrate that these modes, in turn, offer novel ways of capturing
and surfacing knowledge from an engineering design activity-
specific knowledge database. Finally, we consider the role of
designer intention in the synthesis and navigation of such a de-
sign knowledge database. These contributions build on Damen
and Toh’s description of levels of knowledge, and illustrate how
designers across an organization could potentially navigate large

amounts of knowledge effectively.

2.2 Knowledge Graphs in Engineering Design
KGs are networks of data containing nodes, which store in-

formation, and edges, which are the relationships connecting var-
ious nodes. KGs and semantic networks have long served as
important references for large sets of general information (e.g.,
Google, etc.), but more recently have begun playing a large
role in engineering, helping accelerate innovation and design.
Databases like TechNet 1 and ConceptNet 2 are designed to hold
vast arrays of technical data and meet growing knowledge re-
trieval and sharing needs [9, 10]. Such semantic networks use
natural language processing (NLP) techniques to collect data
from large databases like the US Patent network (Technet) and
consolidate them into a single tool. Modeling this information
in a multi-domain KG that is easily navigated by algorithms en-
ables users to access large amounts of interconnected technical
data and drives novel, innovative solutions [39].

Among this range of existing KGs, semantic vs experiential
graph types are particularly interesting for design. The databases
mentioned above are built by extracting a large data corpus
and mapping it onto a proposed ontology. While mining large
databases like the patent database produces thorough semantic
networks, they have limited application and can be difficult to
navigate [40] at a purely semantic level. Bhatia et al. explores the
importance of adding descriptive support to KGs in order to add
context and support user interaction [41]. By building our KG
from a detailed, interactive experience, the data is supplemented
by descriptions and low-level detail that helps situate knowledge,
which has been shown to aid users’ understanding during infor-
mation retrieval [42].

KGs have been used to support data-driven engineering de-
sign [40, 43] as well as collaboration amongst large groups like
companies [44]. This particular type of KG’s relevance in de-
sign has been shown to offer strong insights in product-level de-
sign [39], whereas our study explores the utilization of KGs in
systems design, where various electromechanical elements are
working in conjunction with one another. KGs have also be-
gun appearing as efforts to effectively transfer design knowl-
edge [45], a task that has been shown to be highly dependent on
existing structures or practices [37]. Furthermore, studies have
shown the importance of visual interactions for seeking inspira-
tion and supporting exploration, validating the use of KGs for
user-driven exploratory search [46].

In this work, we extend upon prior research studying knowl-
edge organization in virtual product teardowns through represen-
tation and exploration of our dataset within a KG. Unlike previ-
ous KGs built for engineering design applications, our graph cap-
tures experiential details collected during the teardown activity,

1http://www.tech-net.org/
2https://conceptnet.io/
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offering in-depth insights into what relationships people create
on the same set of knowledge. Additionally, we capture the roles
of the participants who contributed to the data in the KG, impart-
ing a level of participant diversity and nuance to the graph [47].
We use the unstructured teardown data to inform the structure
of our graph, which can then query domain-specific ontologies
constructed through a real design activity. We are able to run
user-driven queries on this graph that are systems and large-scale
design-behavior specific, and present the high-level ability to ex-
ecute four types of data-driven graph searches: intensity-driven,
insight-driven, perspective-driven, and ontology-driven.

2.3 Product Teardowns
Designers and engineers deconstruct products, services, and

systems in a process known as reverse engineering, which is
practiced in a wide range of engineering domains to help design-
ers understand how products and systems work [48–50]. Many
studies focus on how reverse engineering enables designers to
describe a product’s physical characteristics [50], which may be
considered factual knowledge about a product, its components
and its architecture. However, reverse engineering has also been
shown to help designers better understand and more effectively
capture a product’s affordances, that is the range of actions pos-
sible with a given object [17,51], which may be considered more
experiential knowledge about a product [52]. Within reverse en-
gineering, a critical practice is the product teardown, a method
that systematizes the deconstruction of a product and the analy-
sis of its constituent components [29].

Studies of product teardowns in engineering design practice
have examined how teardowns integrate within a broader prod-
uct engineering process. Lauff et. al, examined several sectors
and observed that while some sectors - consumer electronics and
medical device products - employed teardowns during product
design, while another - footwear - did not [53]. Morgan and
Liker describe the role of teardowns in the Toyota Production
System’s approach to product development [54]. Similarly, Ger-
hardt foregrounded the product teardown as part of the first stage
of broader value engineering activities in industry practice, cit-
ing Ingersoll-Rand, Pratt & Whitney, and other firms that engage
with teardowns to transfer knowledge in value engineering [55].
Gerhardt argues that teardowns are a key part of identifying op-
portunities in engineering design and new product development,
suggesting their knowledge-generating value is unique and im-
pactful. Junior et. al observed the centrality of product teardowns
in a Brazilian auto manufacturer’s workflow, and described a cor-
porate teardown database that captured key knowledge emerging
from teardowns for transfer across the organization [56]. Thus,
while the teardown’s centrality in engineering practice is well-
understood, and many studies highlight the method’s effective-
ness as a source for organizational engineering design knowl-
edge, few studies have explored how professional engineers and
designers construct knowledge from product teardown activities,

and how this knowledge could be organized, made actionable,
and transferred.

Product teardowns have received significant attention in en-
gineering design education research, where they are more fre-
quently referred to as ”product dissection.” The method has been
shown to provide experiential learning [57–59], even when con-
ducted virtually [60]. Students are known to differ from profes-
sionals, however, in their engagement with design process [61],
as they appear to leverage cross-disciplinary collaborations [62]
and significant experience in manufacturing and product devel-
opment [63] in their work.

In this work, we extend upon prior research on reverse en-
gineering and product teardowns, including our previous work
on organization of teardown knowledge [30] in two ways. First,
while Gerhardt and Junior described that companies capture and
share knowledge generated from teardowns, we examine how
a novel organizational framework, KGs, could potentially offer
such knowledge access in a scalable fashion. Second, we seek to
explore how the uniquely experiential knowledge gained through
product teardowns can inform a scalable knowledge representa-
tion approach via KGs, and illustrate its use through several ex-
tended examples.

3 RESEARCH METHODOLOGY
This section describes the methodology used to create and

explore knowledge organization from product teardowns in KGs.

3.1 Teardown Study and Data Collection
The data used to build our KG was created during our previ-

ous study outlined in Wang et al. [30]. In this study, the product
teardown data comes from deconstructing Bose Tenor Frames,
smart sunglasses with built-in speakers and user interactivity,
due to the complexity and varying components [30]. Two pro-
fessional engineers and one product manager from the Teardown
Library3 performed the teardown, documenting product features,
observations, and highlights. The research team curated the data
to improve clarity, resulting in 24 media and 52 knowledge arti-
facts.

In a follow-up user study, twenty-three professionals from
various backgrounds and levels of experience were recruited to
organize the teardown knowledge artifacts using Mural4. A sum-
mary of the roles and levels of experience of the participants are
summarized in Table 1. The resulting organization of the knowl-
edge artifacts provided views on different design priorities while
allowing for interesting queries and filters to see how data was
arranged depending on user backgrounds.

First, the professionals were asked to group similar knowl-
edge and media artifacts and assign names, to either groups
or subgroups. The participants were instructed to create these

3https://teardownlibrary.com/
4https://www.mural.co/
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TABLE 1: Overview of the domain and experience of study par-
ticipants.

Role Number of
participants

Average years
of experience

Electrical
Engineer

1 >5 years

Mechanical
Engineer

10 3 years

System
Engineer

2 >5 years

CEO/Manager 2 4 years

Industrial
Designer

2 >5 years

Manufacturing
Engineer

6 3 years

groups based on function, behavior, or structure. Next, they were
asked to link knowledge and media to each other by drawing an
arrow between them and assigning a strength from one to five
(slightly related to very related) and a description. Finally, the
participants were asked to draw links between groups they made,
also providing a description and strength. Further detail about
the study protocol can be found in Wang et. al [30].

3.2 Knowledge Graph Construction
Raw data were coded using the FBS ontology, with three

researchers independently categorizing each artifact. After all
three researchers finished coding, differences were resolved to
reach a 100-percent inter-rater reliability. After the knowledge
and media were coded, the concepts with similar descriptions
were consolidated. Keywords were extracted using natural lan-
guage processing (NLP) from the TechNet API5, used to gener-
ate higher-level names from the participant names. Then, three
researchers categorized 159 individual concepts into 28 new con-
solidated concepts. Further details about consolidation of con-
cepts can be found in Wang et. al [30].

For the input into the knowledge graph, the descriptions of
links were consolidated. The categories of links and frequencies
assigned are summarized in Table 2. Two categories of note are
Collaboration and Tradeoff, which describe relationships where
two nodes have elements which either rely on one another or
must be sacrificed for one another, respectively. Knowledge
nodes were classified using an additional category for labels that
described the knowledge itself, a set of descriptions that was not
present for group links. To categorize the links, two researchers
independently classified all links according to the categories, be-
fore resolving discrepancies.

To create the KG, spreadsheets containing study data were

5https://github.com/SerhadS/TechNet

TABLE 2: Number of occurrences for each link type.

Frequency of
link between
concept nodes

Frequency of
link between
knowledge
nodes

Collaboration 42 26

Tradeoff 26 26

Requirement 32 27

Manufacturing-
related

17 14

User needs-
related

15 13

Description - 21

Total links 125 127

formatted and imported as a csv file into Neo4j6, an open-source
graph database management system. Next, mappings were made
to properties within the spreadsheets, so that they could be effec-
tively attached to nodes and edges in the graph. Using Neo4j’s
native Cypher query language, the data was converted from csv
files into nodes and edges within the Neo4j KG. Additional de-
tails from the spreadsheets were attached as properties of nodes
and edges (Section 4.1.1). Finally, the graph in Neo4j was ex-
ported as a dump file, to be used in the Neo4j Bloom interface
for easy queries.

3.3 Query Execution
Queries for the KG are executed using the Cypher query lan-

guage. Templates for queries based on certain attributes were
generated to allow for easy execution of similar queries (Section
4.2). Queries begin with matching certain properties to find a
node or group of nodes. From there, additional operations can
be performed, including searching through connected nodes and
relationships.

An example of a Cypher query used to find the most-linked
concept in the graph (Section 4.2.1) is listed below, to illustrate
its modular nature.

MATCH (a) -[:LINKED_TO]->(b:Concept)
RETURN b, COLLECT(a) as Outers
ORDER BY SIZE(Outers) DESC LIMIT 1

This study also leveraged Neo4j’s Bloom data platform7 for
visualizing various interaction modes. This tool provides near-
natural language search on the KG and intuitive navigation not
explicitly requiring Cypher code, easing graph navigation and
representation.

6https://neo4j.com/
7https://neo4j.com/product/bloom/
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4 RESULTS AND DISCUSSION
This section presents and interprets insights on the teardown

KG, highlighting its capabilities. We first present and describe
the schema that was used to build the experientially-based KG.
Then, we explore the use of this teardown KG in enabling both
intentional and exploratory modes of user-driven search, featur-
ing these modalities with two extended examples. Finally, we
present four search lenses that leverage the experiential nature of
the KG.

4.1 Knowledge Graph Schema
In order to situate the teardown data in a KG, we propose

the schema in Figure 1. This identifies the four node types found
in the KG: knowledge, media, consolidated concepts, and con-
cepts. Knowledge and media both exist as raw data generated
during the product teardown activity. The consolidated concepts,
concepts, and edge types were established by a separate set of
participants in the knowledge organization portion of the previ-
ous study (Section 3.2). Concepts are groups of knowledge, me-
dia, and/or other concepts. Consolidated concepts are high-level
groupings of concepts. Examples of each node type appear in
Figure 1, with further examples listed here: consolidated con-
cept - ”Housing”, concept - ”Enclosure Design”, and knowledge
- ”One piece effective bi-stable hinge design”. Additionally, the
two edge types are identified: relates and belongs. Relates refers
to the direct linking between two nodes, while belongs refers to
the nesting of one node under another, following ontology pro-
posed by Damen and Toh [25]. Edges categorized as belongs
are directed, while edges categorized as relates are undirected.
Figure 1 identifies the relationships that exist within the KG and
visualizes the hierarchical relationship between the node types.

4.1.1 Graph Properties The KG combines the expe-
riential nature of the teardown study with ontology-based data
coding and consolidation. These features manifest themselves
as properties of the graph. Table 3 shows the properties of each
node type. The Product property associates the node to the spe-
cific product it refers to, while Name and Description are used
as individual node identifiers. FBS is used to encode specific
nodes according to this ontology. Role refers to the job and years
of experience that the participant who encoded a specific node
held. Table 4 shows the properties of each edge type. Descrip-
tion appears as a label explaining the reason why two nodes were
connected by participants using the relates link. The edges also
identify the Role and years of experience of the participant who
created them. The Strength property refers to a participant-rated
strength value of the connection between its two nodes. Finally,
the Type property refers to the consolidated code assigned to the
edge, summarized in Table 2. Here, we have transformed our
data into an accessible and scalable representation, with prop-
erties that enable insightful graph traversal, as seen in the next

FIGURE 1: Guiding schema of the teardown KG. Nodes and
edges are color coded to their type (Consolidated Concept - light
blue, Concept - dark blue, Knowledge - yellow, Media - pink, Re-
lates - gray, and Belongs - beige). Examples for each node type
appear below their labels for clarity.

section.

TABLE 3: Node properties in the KG. Note that media nodes
contain images and illustrations from the teardown activity.

Product Name Description FBS Role

Consolidated
Concept

Concept

Knowledge

Media

TABLE 4: Edge properties in the KG. The additional properties
from those in Table 3 are Strength (participant-assigned value of
how related two nodes are) and Type (see Table 2).

Product Description Role Strength Type

Relates

Belongs

4.2 Graph Search Methods
Given the various node properties of the graph, we envision

this graph will serve as a tool to execute queries in order to fil-
ter through the data and find specific insights. We present these
queries as modular Cypher searches, which can be combined to
answer complex questions on the teardown data, as seen in the
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extended examples. Queries for both intentional and exploratory
search are presented, allowing graph users to find both answers
to specific questions as well as use the graph as a tool to explore
the teardown data meaningfully.

4.2.1 User-Driven Intentional Search Navigating
the graph with a specific query in mind is enabled by the inten-
tional search features of the dataset. These provide results to di-
rected questions that may arise from product teardowns or expe-
riential activities as a whole, which many designers use as tools
to discover and understand existing products’ designs. In this
section, we propose several envisioned search queries and user
interactions that are driven by the graph properties and which
leverage the experiential nature of the graph, and then situate
them in an extended example (Section 4.2.2).

FBS Ontology. The graph can be filtered to see nodes
tagged under a specific FBS heading, in order to find the im-
portant functions, structures, or behaviors of the product. This
supports the idea that teardowns are commonly used to discover
a product’s architecture and leverages one of the driving ontolo-
gies of the previous study (Section 2.3) [30].

Most-Linked Nodes. The graph can find the most-linked
nodes (i.e. most linked concept, most linked knowledge node,
etc.) in order to see which features are most heavily connected
within the graph. This query allows users to view which com-
ponents are most connected and thus seen as important across a
diversity of participants and roles. In dissecting a complex elec-
tromechanical product like the smart glasses, recognizing which
features stand out across domains is an important step in under-
standing product anatomy.

Tradeoff or Collaboration Links. The graph can also be
navigated through the connections between nodes to find links
classified as tradeoffs or collaborations in order to highlight
where important design decisions and sacrifices must be made.
The ability to search the graph by link type helps users learn
more about design intent and why certain features are designed
that way relative to neighboring features. These links can be con-
sidered important decision-making areas.

Participant Role or Experience. The graph can be filtered
for nodes appearing by participant role (manager, engineer, etc.)
or by participant experience (in years) in order to learn how di-
versity in participants brings new paths and connections to the
graph. This allows different organizational techniques to come
together and inform the graph, accentuating the various perspec-
tives that different levels of experience and unique careers bring
to knowledge formation.

Strength of Connections. Finally, the strength of connec-
tions within the graph can be used in order to find and rank
the most important paths in the knowledge base. This metric
can be used by considering the participant-ranked relationship
strengths, which provides insights into connections the partici-

pants found particularly significant. Additionally, the strength
metric can be calculated through either the number of unique
paths between a start and end node or by the number of unique
contributors to a particular path or subsection of the graph. Both
of these metrics are indicators that those particular connections
were consistently produced among the variety of participants.

4.2.2 Extended Example: User-Driven Intentional
Search By combining many of the envisioned search queries
above, we look to enable users to learn through intentional
search, navigating the graph to answer specific queries. We envi-
sion that the KG can serve many purposes to designers, from en-
abling analogical inspiration to gauging existing products. Here,
we explore an example centered around intentional search, show-
casing the many insights and abilities our KG holds for bench-
marking an existing product. Because of the “smart” nature of
the product dissected in the teardown, we can infer that an impor-
tant feature will be the battery that runs the specialized features
of the glasses.

We begin by looking at the question “Which elements are
dependent on the battery?”, a query a designer might be inter-
ested in learning more about. By querying for battery and find-
ing its related concepts, we identify groups that are directly rel-
evant to the high-level idea of the battery. Next, we explore a
level of concepts further away, filtering for relations which are
classified as collaborations or tradeoffs. Now, we’ve identified
the specific concepts that are considered interconnected with or
tradeoffs with the battery, and want to abstract one level fur-
ther, in order to get a clearer understanding of which high-level
consolidated concepts answer our initial query. Navigating the
graph shows us the final elements that are dependent on the bat-
tery functioning and the result to our query: Audio, Logic board,
Cost, Housing, Weight, Right assembly (Figure 2). These ele-
ments are represented as nodes in Figure 2, appearing as the out-
ermost light-blue nodes.

We rate the strength of our results using the metric of num-
ber of unique paths. Here, we count how many unique paths ex-
ist between a start and end node, with a higher number of paths
indicating more participants created relationships between these
nodes. In this case, our start node is always battery and our end
nodes are each of the 6 results mentioned above. As seen in
Figure 2, the audio node is ranked as the strongest result with 4
unique paths between it and the battery. These 4 pathways are
highlighted in green to show their prominence in the overall re-
sults. Users can explore the pathways between the two nodes to
learn more low-level details of the importance of this connection.

Finally, there are 8 unique contributors to this overall re-
sulting graph across 5 unique roles, exemplifying the diversity
of participants involved in this knowledge organization process.
This suggests the importance of curating knowledge from differ-
ent backgrounds to account for varying design priorities, captur-
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FIGURE 2: Intentional search query results, showing the small
portion of the graph relevant to our search. The battery node is
labeled B, and the results to our query appear as the outermost
light blue nodes. The strongest result is the audio node, given
4 unique paths starting from battery (labeled B) and ending at
audio (labeled A). These paths are highlighted in green in the
graph. Note, each node contains text that is legible to user but
does not appear in the figure for visualization purposes.

ing both very common threads as well as unique perspectives.
Implications. These findings suggest that the intentional

search capabilities of this KG can support knowledge retrieval
from a design organization activity, and have several implications
for organization and management of engineering design knowl-
edge. First, at the level of an individual designer, specific to Wal-
lace et al.’s concept of product knowledge [35] and to product
teardowns especially, intentional search of our KG can help de-
signers uncover design intent and understand a product’s affor-
dances. This can facilitate the key objectives of product tear-
downs [17, 51].

Second, also at the level of an individual designer, inten-
tional search as illustrated here can help navigate the inherent
tensions in levels of information that Damen and Toh identified
in the engineering design process [31]. In particular, queries re-
lated to roles could allow designers to navigate tensions in gener-
ality of information, by easily accessing information disciplinar-
ily distinct from their own roles; in our example, a single query
accessed knowledge generated by 5 different roles. Intentional
queries could also allow designers to more easily navigate ten-
sions related to levels of effectuation of information (effectuation
and causation), by allowing them to rapidly iterate on various
modes of understanding an existing knowledge base, rather than
awaiting acquisition of new knowledge to support their goal.

Lastly, at the level of organizations, the intentional search
presented here offers a way for organizations to connect open-
ended, nonspecific queries with detailed engineering design

knowledge related to both product design and design process.
Particularly intriguing is the possibility for KGs like ours to avail
implicit or tacit knowledge across organizations beyond specific
engineering design contexts. This builds upon the capabilities
of current semantic networks built for engineering design, which
are well-supplied with explicit, easily-transferable information,
but lack this critical element of detailed, implicit knowledge. Ad-
ditionally, our KG’s descriptive and accessible properties add a
dimension not commonly seen in the current KG space. Fol-
lowing Rust, design activities can transfer tacit knowledge to the
explicit [34]; however, there is a limited number of collabora-
tors who could participate in a product teardown. Generating a
KG grounded in design activities could connect tacit knowledge
across an organization in valuable ways.

4.2.3 User-Driven Exploratory Search Apart from
very directed queries, the graph also supports more undirected
exploration. This lends itself to users spontaneously finding in-
sights and supports the open-ended, fact-finding nature of prod-
uct dissections. In this section, we propose several pattern struc-
tures that hold interesting design implications, situating them in
an extended example.

Collaborations and Tradeoff Triangles. The graph can
identify collaboration and tradeoff triangles to find elements that
are heavily interconnected. These triangles (A→B→C →A) in-
dicate critical decision-making areas where some elements must
be sacrificed for others, a useful tool in identifying design intent.
Because these chains of connections are rated in strength by the
study participants, we can calculate the total strength, or cost, of
each triangle in order to find which areas are considered more
strongly connected or important to engineers and designers.

Collaboration/Tradeoff Patterns with FBS Grouping.
We can discover tradeoff or collaboration patterns that are tied to
FBS grouping, allowing for additional patterns that expose criti-
cal decision-making areas and pathways. For example, given that
pathway A is a tradeoff of B and B is reliant on C, we infer that
A is reliant on C and establish a new important link. An example
is shown in Figure 3, where the behavior-classified concept of
Works-Like (left) is a tradeoff of the structure-classified concept
of Assembly/Manufacturing of a Prototype (middle). The mid-
dle node is reliant on Engineering Validation Tests (right) and
therefore creates a new inferred collaboration link between the
outer two nodes, generating new knowledge from the graph by
emphasizing the need to have operational ”works-like” models
in order to complete the validation tests run on these prototypes.
The detailed KG also contains descriptions for links, providing a
level of rationale behind these connections. Exploring these var-
ious relationship types among specific FBS types can expanded
to longer pattern pathways and drives insights into understanding
design intent. An example of this is explored in Section 4.2.4.
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FIGURE 3: Subsection of the graph showing an example of
a linear pattern highlighting a tradeoff-collaboration relation-
ship. The Works-Like concept (left) is a tradeoff of the Assem-
bly/Manufacturing of a Prototype concept (middle). Finally, the
middle node is labeled as reliant on Engineering Validation Tests
concept (right), creating a new inferred link between the outer
two nodes.

4.2.4 Extended Example: User-Driven Ex-
ploratory Search This KG enables users to learn through
open, exploratory search, browsing the graph in an undirected
fashion in order to learn about the product. Here, we present an
example centered around exploratory search, using the various
tools and filters this graph provides. Given that the smart glasses
are wearables, we can infer that an important feature will be the
lightweight nature of the product.

We begin by looking at the question “What can I learn about
the lightweight aspect of these smart glasses?”. The natural lan-
guage capabilities of Neo4j Bloom allow us to query the term
lightweight and explore connected nodes. While a user may
freely explore by observing relationships around the lightweight
node, we will focus on exploring patterns that appear in the data.

Structure-behavior tradeoffs. In this pattern, we wish to
utilize the FBS ontology and link classifications to learn more
about these relationships. To begin, we have a desired behavior
we wish to achieve (lightweight) and want to learn which struc-
tures are important towards achieving this behavior. We search
for a structure-behavior tradeoff pattern linked to our desired be-
havior node and learn that the right temple structure is important
(Figure 4), with the graph providing an image of the temple area
directly from the teardown activity. In Figure 4, we see the de-
tailed pathway and nodes connecting our desired behavior and its
supporting structure, and have the ability to abstract a level to the
concept level to learn about the higher-level structure that is play-
ing a role in this behavior, in this case, the glasses’ frame. This
pattern opens up the graph to explore these relevant areas and
provides link descriptions to justify why this pattern appears.

Shortest Path. In order to learn more about how our data
is connected, we can choose two nodes of interest and view the
shortest path between them. This pattern unearths the elements
connecting pieces of interest and can provide clarity in the con-
text of a product teardown. In this example, we explore how
the idea of being lightweight connects to the important battery
component (Figure 5). Through this path, we learn about the rel-
evance of the battery size to the lightweight aspect of the glasses
and gain awareness of the design choices made for the user.

Implications. Many salient implications of intentional

FIGURE 4: Example of a structure-behavior tradeoff connected
to our lightweight node of interest. Starting at the lightweight
node on the bottom left, the pathway is shown with edge de-
scriptions to show the detailed justification of connections to a
related structure, the glasses’ right temple.

FIGURE 5: The shortest path between two nodes of interest
(lightweight on the bottom left and battery on the top right)
highlights the connections participants create between major el-
ements of the teardown.

search described earlier apply to exploratory search as well: en-
abling more effective discovery of product architecture and af-
fordance during teardowns; helping designers navigate tensions
between levels of information; and more readily availing design-
specific and implicit or tacit knowledge across an organization.
There are several implications specific to exploratory search ca-
pabilities of this KG, however. First, extending on previous find-
ings by Li et al. that suggest KGs can be used to drive nov-
elty in product design [39]. In particular, navigating the graph
using the proposed patterns can aid in clarifying design intent
and identifying critical decision-making areas. This connection
highlights the support that KGs provide in using teardown infor-
mation to identify areas of value and opportunity in engineering
design. Second, exploratory search via the proposed ”shortest
path” pattern can particularly afford a balance between effec-
tuation of knowledge and causation [31] by having a designer
articulate an open-ended question (causation), then assembling
existing knowledge in the most efficient manner (effectuation) to
address it. Finally, while many other engineering KGs allow for
exploratory search of their data, the nature of our teardown KG
builds upon these KGs by facilitating clarity of connections be-
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tween multiple nodes, and incorporating visualizations and me-
dia that support the descriptive nature of the graph.

4.3 Experiential Data-driven Search
While the previous sections have focused on searches begun

by a user’s inquiry - either an intentional, specific question, or an
exploratory, open-ended one - here we consider how experiential
data embedded in the KG alone can offer compelling insights.
We present four high-level search lenses to illustrate this ca-
pacity: intensity-driven, insight-driven, perspective-driven, and
ontology-driven search. These lenses on our KG demonstrate
the value of building and detailing an experiential KG for both
directed and undirected graph exploration: the constituent data
of the graph itself, independent of an intentional or exploratory
query, can offer insight.

Intensity-Driven Search By identifying which pathways
are most frequently used or which nodes are most highly con-
nected, this graph highlights commonalities among a large range
of participants. For example, identifying that audio and battery
are two of the most connected consolidated concepts in the smart
glasses KG could draw designers’ attention to these and naturally
highlight their prominence in the product. By featuring recurring
connections, the graph uncovers the major components of a prod-
uct and emphasizes elements that are considered of relevance
across many disciplines, potentially aiding future tools looking
to automate knowledge retrieval of highly important product at-
tributes.

Insight-Driven Search Navigating the graph by edge types
(i.e. tradeoffs, collaborations etc.) can lead to valuable insights
on knowledge that is inductively linked and can highlight where
important decision making areas appear. Adding the depth of
link descriptions to the graph layers on an important level of de-
sign rationale and provides details rooted in the experiential na-
ture of the data. These queries help provide understanding of the
design rationale that went into the product being dissected and
support the transfer of an unstructured experiential dataset to a
searchable graph.

Perspective-Driven Search The variety of participants in
the knowledge organization activity means that diverse opinions
are proxied by different roles from the searcher’s own. For in-
stance, comparing the pathways that an electric engineer creates
as opposed to an industrial designer can provide role-based per-
spective to portions of the KG, and identifying queries that weave
together many roles and participants provides range in results.
The ability to bring together a wide set of viewpoints and levels
of experience, while still maintaining the small, detailed nature
of this graph, allows for unique results to be discovered while
differentiating the graph from larger-scale semantic networks.

Ontology-Driven Search Using the FBS ontology to orga-
nize and categorize the data allows for graph users to consider
specific design decisions that need to be made and consequently
search on those. For example, a designer who is focused on de-

sign intent may wish to search based on function nodes, while
a designer focused on a product’s makeup will wish to search
based on structure nodes. In this way, the graph is able to pro-
vide levels of design understanding and rationale in an algorith-
mic fashion.

4.4 Future Work and Limitations
This paper provides a foundation for future work hoping

to leverage KGs to support knowledge organization and explo-
ration. First, we can conduct user studies of the knowledge graph
to further explore the modes designers and organizations inter-
act with knowledge organization, both with and without a KG.
Second, the current data collection process can be time consum-
ing, which restricts the number of insights and products included
the graph. Future work might leverage the current findings as a
guide for collecting specific design knowledge data from other
sources, such as online repositories of design challenges, or at
the time of creation in CAD and other design tools. Last, NLP
could be leveraged to automatically classify links and entities in
the graph. Automated collection of design data, on the order of
1000 products, might enable the use of graph neural networks for
deriving latent feature representations of entities and relations.
This would enable retrieval of implicit knowledge beyond cur-
rent methods of querying for explicit knowledge, and support
tasks such as style transfer, similarity search, and unsupervised
learning of unstructured design knowledge.

Future work might compare direct knowledge extraction
from design activities against other automated large-scale knowl-
edge extractions methods, from sources such as patent databases
or Wikipedia. Leveraging the underlying explicit relationships
contained in existing semantic KGs might help automate the con-
struction of the graph schema, as well as support unsupervised
classification of entities and relationships.

5 CONCLUSION
In this work, we developed a knowledge graph based on ex-

periential data from a previous product teardown activity. Lever-
aging the knowledge graph, we demonstrated user-driven and
data-driven search patterns to extract insights from the experien-
tial nature of the data and support knowledge transfer of implicit
or tacit information. By transforming unstructured design data
into a structured, easily traversable tool, we support knowledge
retrieval and sharing. These findings enable valuable insights
into design intent and innovation, and how to structure and share
knowledge in complex design activities and organizations.
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