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The Evolution and Impact of
Human Confidence in Artificial
Intelligence and in Themselves
on AI-Assisted Decision-Making
in Design
Decision-making assistance by artificial intelligence (AI) during design is only effective
when human designers properly utilize the AI input. However, designers often misjudge
the AI’s and/or their own ability, leading to erroneous reliance on AI and therefore bad
designs occur. To avoid such outcomes, it is crucial to understand the evolution of design-
ers’ confidence in both their AI teammate(s) and themselves during AI-assisted decision-
making. Therefore, this work conducts a cognitive study to explore how to experience
various and changing (without notice) AI performance levels and feedback affects these
confidences and consequently the decisions to accept or reject AI suggestions. The
results first reveal that designers’ confidence in an AI agent changes with poor, but not
with good, AI performance in this work. Interestingly, designers’ self-confidence initially
remains unaffected by AI accuracy; however, when the accuracy changes, self-confidence
decreases regardless of the direction of the change. Moreover, this work finds that designers
tend to infer flawed information from feedback, resulting in inappropriate levels of confi-
dence in both the AI and themselves. Confidence in AI and self-confidence are also
shown to affect designers’ probability of accepting AI input in opposite directions in this
study. Finally, results that are uniquely applicable to design are identified by comparing
the findings from this work to those from a similar study conducted with a non-design
task. Overall, this work offers valuable insights that may enable the detection of designers’
dynamic confidence and their consequent misuse of AI input in the design.
[DOI: 10.1115/1.4055123]
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1 Introduction
Artificial intelligence (AI) has extended its influence to design

settings by demonstrating its potential to contribute to various
steps of the design process such as customer preference identifica-
tion, ideation, and manufacturing [1–4]. One example is the data-
driven 3D shape generation algorithm presented by Zhang et al.
which creates a variety of new designs from a given dataset [5]. Fur-
thermore, Raina et al. developed an AI that learns to design from
human data and generates products that are as good as those
created by human designers [6]. Some AI can even outperform
human designers [7,8]. However, AI systems possess their own
set of limitations that may be complemented by human strengths,
suggesting an opportunity for human-AI collaboration in design.
For example, AIs have an advantage in their ability to efficiently
pull insights from large data but cannot yet replace human agility
and creativity [9]. Together, human designers and AI may be able
to solve complex, dynamic problems that neither of them can
solve alone [10,11].
An important question about human-AI collaboration in design is

how to design and enable an AI agent to aid human designers as
effective and empowering teammates. One way may be by assisting

the human decision-making; such human-AI teaming is prevalently
known as AI-assisted decision-making. During AI-assisted
decision-making, humans receive design suggestions from their
AI teammates, which they must either accept or override to make
the final decision. Here, AI is contributing to the team as a
“second opinion” system, providing its best solution to humans as
a second opinion to consider.
AI assistance, however, is only beneficial when human designers

appropriately utilize AI input. Unfortunately, humans often fail to
discern when to accept or reject AI suggestion(s), defeating the
purpose of AI-assisted decision-making. Further, such errors can
negatively impact human lives and, more likely, the quality of
human lives. In non-design, high-stakes contexts, faulty judgment
of AI input has already been shown to have detrimental conse-
quences [12–14]. For example, in 2015, when a Google self-driving
car was slowing down for a pedestrian, the driver further applied the
brakes, causing the car to be hit from behind [15]. Such an outcome
is very likely also in design decision-making scenarios. For
example, when designing seats for an airplane, accepting a poor
design suggestion from an AI can significantly aggravate user expe-
rience and might even contribute to the loss of human lives in case
of an accident.
Prior research has shown that human designers’ decision to

accept or reject AI suggestion(s) is dependent on their trust in the
AI [12–14,16–20], meaning that humans make erroneous decisions
when their trust does not match the AI’s trustworthiness. Many
factors influence this trust, especially those that affect their percep-
tion of the AI or themselves. As in our earlier work [21], the current
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work investigates two of these factors in the context of design
decision-making: confidence in AI and self-confidence. Confidence
in AI and self-confidence bring insight into two antecedents of trust
proposed by Mayer et al.: perception of trustee’s attributes such as
ability, and a propensity to trust [22,23]. Therefore, confidence in
AI represents humans’ perception of AI’s task ability, while self-
confidence represents the perception of their own task ability, con-
tributing to humans’ inclination to rely on the AI.
Chong et al. [21] studied human confidence in AI and self-

confidence during an AI-assisted chess puzzle task and provided
valuable insight into the evolution of human confidence and its
impact on decision-making. However, the results from their work
are specific to tasks sharing similar characteristics as the chess
puzzle task and therefore may not apply directly to design tasks.
Furthermore, the two types of human confidence have been under-
studied in design contexts likely due to the subjectivity in defining
what “good” design is and consequently how good the AI sugges-
tions are. An accurate understanding of confidence dynamics and its
influence on the decision to accept AI input during design tasks is
critical to resolving human designers’ erroneous reliance on AI
and improving the effectiveness of AI-assisted decision-making in
design.
To achieve this understanding, this work investigates the evolu-

tion of human confidence in AI and human self-confidence, and
their impact on AI-assisted decision-making during a truss design
task. Insights into human designers’ confidence during AI-assisted
decision-making can inform effective formation of human-AI
design teams and improve the overall outcome of teamwork by sug-
gesting ways to reduce inappropriate reliance on AI. Although the
truss design task may not represent all types of design problems,
it is chosen for its well-defined and sequential nature. In contrast
to some other design problems, it is possible to define and evaluate
good design and good AI suggestions in the truss design problem,
which is crucial in supplying objective feedback to the participants.
Moreover, the sequential nature of the truss design task not only
provides a great setting to study dynamic confidence but also resem-
bles the chess puzzle task and enables comparison between the
results of the two studies. The current work explores the same
research questions from Chong et al. [21] but in the context of
design as follows:

(1) How to do changes in AI performance and resulting positive
and negative feedbacks affect human confidence in AI and
human self-confidence?

(2) How are these two types of confidence associated with the
probability of accepting AI suggestions?

(3) What decision-making patterns distinguish those who suc-
cessfully accept and reject AI suggestions? and additionally
answers the following question:

(4) Which of the results are unique to design?

2 Methods
For the purpose of this work, a human subject study and a quan-

titative model are used to collect and model the data which are then
analyzed via statistical methods. The cognitive study shows how
human confidence in AI and human self-confidence evolves over
the course of AI-assisted decision-making in design in view of
changes in AI accuracy. The quantitative model of human confi-
dence captures the impact of various experiences during AI-assisted
decision-making on the two types of confidence.

2.1 Human Subject Study

2.1.1 Experimental Task. Participants are given a truss design
task in which they must make the best next action given a truss state
(see Fig. 1 for an example problem). They are asked to work with an
AI teammate, named Taylor, who provides an action suggestion for
each problem. In this task, the “best” action means the most advan-
tageous action at the given moment to maximize the
strength-to-weight ratio (SWR) of the truss. This truss design task
used in this study originates from earlier work by McComb et al.
where the goal was to create optimal trusses that can handle
certain loads [24]. The original task is modified by eliminating
the “add node” and “move node” options to reduce the design
space, limiting the search of the AI algorithm and making it possible
to evaluate the goodness scores of all possible actions. There are
always finite numbers of possible actions because the only action
options are “delete node”, “add member”, “delete member”,
“decrease member thickness”, and “increase member thickness”,
the latter two at defined increments. There is total of 33 truss

Fig. 1 Truss design task procedure. The user interface is adopted from McComb et al. [24] and modified for the needs of this
study.
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design problems in this study (three for practice and 30 for the
experiment) to capture AI-assisted decision-making scenarios
with sequence of design actions and examine how the experience
in each problem influences human confidence in AI and in them-
selves. It is ensured that all 30 problems have at least one good
action and one bad action, distinguishable by the following
method to calculate the goodness scores of the actions.
An AI algorithm based on deep learning and tree search is devel-

oped to determine good and bad actions from a given state and
provide suggestions and feedback to the participants (see Fig. 2).
In the first step, given a truss state (sinit), all possible discrete
actions are determined (see Depth 0 in Fig. 2). Each of these
actions results in a new truss state. To determine the goodness
score of these actions, their resulting states are evaluated using a
tree search. The computational cost associated with the tree
search is >106 states for Depth 3, which is effectively higher than
what humans can search. To mitigate the cost, rather than evaluating
all possible actions, the tree search leverages a data-driven agent
from Raina et al. [6] to select five meaningful actions at each
depth. The agent generates a list of all possible actions at a given
state and ranks them in the order of likeliness that a human will
make the action. Our AI algorithm utilizes this likeliness ranking
to select the top five meaningful actions at each depth and
achieve a search to Depth 3. The goodness score of all possible
actions in Depth 0 are calculated using the resulting states at
Depth 3. For each action in Depth 0, its goodness score is deter-
mined by calculating the weighted sum of the SWR of 53 or 125
truss states at Depth 3 that branched off from the action.

2.1.2 Participants. 100 participants were recruited for (and
completed) the experiment following a protocol approved by Carne-
gie Mellon University’s Institutional Review Board. All participants
are Mechanical Engineering undergraduates or graduate students
from Carnegie Mellon University or University of California at
Berkeley. Prior to their participation, they have all taken amechanics
course, and therefore they had experiencewith designing trusses. It is
worth noting that although there may be significant differences in the
truss design skills among undergraduates and graduate students, this

is not a problem for the purpose of the study because most analyses
are based on the averaged data over a large pool. Moreover, rather
than controlling their truss design skills, the participants’ individual
skill levels are collected during the experiment.

2.1.3 Experimental Conditions. There is total of 30 truss
design problems in the study. After problem 20, the quality of AI
suggestions changes to instantiate the dynamic performance of
the AI, and the direction of this change distinguishes the two exper-
imental conditions. Depending on the similarity of task scenarios to
AI’s training dataset, the AI performance may fluctuate. In the first
condition (hi-lo—meaning the AI begins with primarily high accu-
racy, and transitions to low), AI accuracy switches from 80% to
20%, while in the second condition (lo-hi—meaning the AI
begins with primarily low accuracy, and transitions to high), it
changes from 20% to 80%. 80% accuracy means that 80% of the
time, the AI chooses the best action out of all possible actions.
For the other 20% of the times, the AI chooses the worst action.
In the same way, 20% accuracy means that the AI chooses the
best action 20% of the time. Each participant is randomly assigned
to one of the two experimental conditions (50 per condition).

2.1.4 Procedure. The experiment is conducted virtually on
Amazon Web Services. Prior to participation, informed consent is
obtained via Google Forms from all participants. The participants
then receive an email with a step-by-step instruction of the experi-
ment and are assigned 90 min to complete the experiment.
All participants follow the same procedure for each truss design

problem, as shown in Fig. 1. First, given a truss state, they select
their best next action before receiving an AI suggestion (first step
in Fig. 1). This unassisted action is designed into the experiment
to collect data about the participants’ independent truss design
task ability. After the unassisted action is selected, the participants
receive an AI suggestion (second step in Fig. 1). Considering this
suggestion, they make the final decision to either accept it or over-
ride it with another action (third step in Fig. 1). When overriding,
the participants are not limited to their initial, unassisted action
but can make any action different from the AI suggestion. Next,

Fig. 2 Tree search AI algorithm that evaluates the goodness score of each action. For
each truss problem (or each initial truss state, sinit), the AI conducts a tree search to
Depth 3 to evaluate the goodness of each possible action from that state. Variables s
and a respectively represent state and action, and the depths are indicated in
parentheses.
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the participants gain either positive or negative feedback depending
on whether the final action is advantageous or disadvantageous
towards a high SWR (fourth step in Fig. 1). This advantage and dis-
advantage are determined by the goodness evaluation score intro-
duced earlier (see Fig. 2). According to the feedback, the
participants also gain or lose five points. At the start of the experi-
ment, to incentivize the participants, they are informed that those
who receive a score higher than ten will receive an additional mon-
etary prize. This threshold is a score that was difficult to be reached
by participants in the pilot study. Finally, for each problem, the par-
ticipants report their confidence in their own ability and in the AI’s
ability to design trusses, each in a five-point Likert scale (last two
steps in Fig. 2). The confidence questions ask: How good are you
(or the AI) at designing trusses? and the answers include very
good, good, neutral, bad, and very bad, which are respectively
quantified as 1, 0.75, 0.5, 0.25, and 0.
Once the participants are done with the 33 problems (the first

three are practice problems), they are asked to fill out a post-
experiment questionnaire that is designed to gain more insight
into the results of the study. The questionnaire contains five ques-
tions which are as follows:

(1) How helpful were the AI suggestions in doing this task?
(2) Was the quality of the AI suggestions consistent? If not, how

did it change?
(3) How good were you at designing trusses?
(4) How good were you at making the final decision of which

move to choose between your own move and an AI
suggestion?

(5) When deciding between your own design move and an AI
suggestion, what did you consider more: AI’s ability to
design trusses or your own ability to design trusses?

2.2 Confidence Model

2.2.1 Model Description. The analysis made in this paper uses
the confidence model proposed by Chong et al. [21]. The model’s
calculation of the trial-by-trial change in human confidence consid-
ers three factors: experience, accumulated confidence, and bias, as it
did in Hu et al.’s dynamic trust model [25]. Hu et al.’s model was
developed and validified to compute the dynamics of human beha-
vioral trust (accept or reject AI inputs) in human-machine interac-
tion contexts. Therefore, the general form of this model is applied
to the sequential AI-assisted decision-making context of Chong
et al. [21] and this work (see Eq. (1)). However, Chong et al.’s
[21] model is unique in its calculation of the experience term
(Eq. (2)) because of its application to AI-assisted decision-making
scenarios. Hu et al. [25] studied a different, less realistic
human-AI decision-making scenario in which humans blindly
accept or reject AI suggestions, meaning without much information
about the given problem. Furthermore, Chong et al. [21] extended
Hu et al.’s [25] model to be applied to self-confidence, in addition
to confidence in another person/AI. This section describes informa-
tion about Chong et al.’s [21] model pertinent to the current work.
Additional details can be found in Chong et al. [21].
The following is the general model equation [25]:

C(n + 1) = C(n) + αe[E(n) − C(n)] + αa[A(n) − C(n)]

+ αb[B(n) − C(n)] (1)

where C(n), E(n), A(n), B(n), αe, αa, αb∈ [0, 1].

The differences between each of the three factors (experience
(E(n)), accumulated confidence (A(n)), and bias (B(n))) and confi-
dence at trial n (C(n)) are summed with weights to yield the
change in confidence from trial n to n+ 1. αe, αa, and αa are the
rate factors.
Experience term in Eq. (1) (E(n)) refers to the human designer’s

experience with the AI at a given trial n. Regardless of the task,
there are four types of experiences that can occur in each trial of
AI-assisted decision-making as follows:

(1) Accept the AI suggestion, then receive positive feedback
(e1);

(2) Reject the AI suggestion, then receive positive feedback (e2);
(3) Accept the AI suggestion, then receive negative feedback

(e3);
(4) Reject the AI suggestion, then receive negative feedback

(e4).

In the infrequent case when the participants’ unassisted action
(before AI suggestion) agrees with the AI suggestion, and they
choose this action as the final act, the participants are considered
to have accepted the AI suggestion (e1 or e3) because they still
did not reject it.
In this work, the impact of these four experiences on both human

confidence in AI and self-confidence is explored. The experience
term at trial n is the weighted (ω1, ω2, ω3, and ω4) sum of the
four sub-experience terms

E(n) = ω1e1(n) + ω2e2(n) + ω3e3(n) + ω4e4(n) (2)

where e1(n), e2(n), e3(n), e4(n) = 0 or 1, ω1,ω2,ω3,ω4∈[0, 1] and∑4
n=1 en = 1.

The exact form of relationship between the sub-experiences is
unknown. Therefore, this linear relationship is used to reveal the
relative impact of the sub-experiences on the confidence levels
when fitted to experimental data. It is important to recognize,
however, that the confidence model is overall an iterative, non-
linear model. The aforementioned equations are the model form
at each trial n, and the model is fitted to data iteratively over
30 trials.

2.2.2 Parameter Fitting. Parameter estimation was conducted
using a trust region reflective algorithm [26] because it is a param-
eter fitting method for nonlinear models and supports bounded var-
iables. Given initial parameter values, the algorithm iteratively
tweaks the parameters and calculates the error until it finds the
optimal results. The optimal parameter values fitted to the experi-
mental data from the cognitive study are shown in Table 1. αe,
αa, αb are the weights respectively corresponding to the experience,
accumulated confidence, and bias terms in the model. ω1, ω2, ω3,
ω4 are the impact factors that represent the impact of the four types
of experiences during AI-assisted decision-making on confidence.
γ is the time discounting factor in the calculation of the accumulated
confidence term. The optimal parameter results were confirmed to
be impervious to the initial guess by repeating the estimation
process with various initial values.
For a robustness test, the parameters were estimated using 80% of

the experimental data (80 participants) that were randomly selected,
and this process was repeated 100 times. The initial guesses were set
to the values in Table 1. The results from the 100 trials showed only

Table 1 Model parameter fitting results

αe αa αb ω1 ω2 ω3 ω4 γ

Confidence in AI 0.329 0.354 0.0433 0.870 0.252 0.117 0.292 0.299
Self-confidence 0.286 0.275 0.118 0.623 0.833 0.195 0.188 0.279

Note: Bolded results are discussed in this paper.
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minor variations (below 0.1 mean absolute deviations from the
values in Table 1). Therefore, the model parameter fitting results
are robust.
With the optimal parameter values in Table 1 and the initial con-

fidence values, the model iteratively calculates and predicts
trial-by-trial human confidence in AI and human self-confidence
in the experiment (see Fig. 3). The data points are the mean confi-
dence of the 50 participants in the relevant condition. The standard
error of the data is indicated by the error bars. The fitted lines show
the mean model fitting results found using the optimal parameter
values. Although the model computes confidence values at individ-
ual trials, line plots are used for a clear visual demonstration of the
fit. The mean squared error (MSE) and adjusted R-squared value of
the confidence in AI model (Figs. 3(a) and 3(b)) are 0.0017 and
0.75, respectively. The MSE and R-squared value of the self-
confidence model (Figs. 3(c) and 3(d )) are 0.00076 and 0.75,
respectively.

3 Results
3.1 Impact of Artificial Intelligence Accuracy and Its

Change on Human Confidence. Figure 4 displays the confidence
in AI and self-confidence results from the two experimental

conditions. The data points are the mean confidence of the 50 par-
ticipants in the relevant condition. The standard error of the data is
indicated by the error bars. The linear fits before and after the AI
performance change are also shown in the plots. The slopes of
these fits are used to assess the rate and trend of change in confi-
dence rather than the magnitude of change.
Figures 4(a) and 4(b) show the changes in designer’s confidence

in AI during the two conditions (hi-lo and lo-hi). When initially
working with the AI before the AI performance change (i.e., prob-
lems 1 to 20), good AI performance in hi-lo condition does not sig-
nificantly influence how confident designers are in the AI’s ability
(F-test, p= 0.4). However, poor AI performance in lo-hi condition
decreases the participants’ confidence in the AI (F-test, p< 0.05).
After the change in the AI performance (i.e., after problem 20),
the trend in the confidence in the AI switches in the same direction
as the performance change, though not statistically significant
(linear regression with interaction, p= 0.5 and 0.1, in hi-lo and
lo-hi conditions respectively).
Figures 4(c) and 4(d ) illustrate the self-confidence results. During

the initial interactions with the AI (i.e., problems 1 to 20), both good
(hi-lo condition) and bad (lo-hi condition) AI performances have
a marginally significant, negative impact on self-confidence
(F-test, p= 0.06 and 0.05, in hi-lo and lo-hi conditions respec-
tively). With a switch in AI performance, regardless of the direction

Fig. 3 Confidence in AI model fitting results in the (a) hi-lo condition and (b) lo-hi condition. Self-confidence model fitting
results in (c) hi-lo condition and (d ) lo-hi condition. Each pair (i.e., (a), (b) and (c), (d )) uses the same parameter values to fit
the model to the data.
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of the switch, the trend of self-confidence changes in the negative
direction. The magnitude of this change is marginally significant
in both conditions (linear regression with interaction, p= 0.1 and
0.05, in hi-lo and lo-hi conditions respectively).

3.2 Impact of Different Types of Experiences on Human
Confidence. The estimated values of the parameters, ω1, ω2, ω3,
and ω4, in the confidence model (see Table 1) illustrate the
impact of the four types of experiences during AI-assisted decision-
making on designers’ confidence in the AI and in themselves. These
results are repeated in Table 2 for convenience. As mentioned in the
earlier description of the model, ω1 and ω3 correspond to the
instances where designers are receiving either positive or negative
feedback on the performance of the AI (i.e., accept AI suggestions)
respectively. ω2 and ω4 correspond to those where designers are
receiving either positive or negative feedback on their own perfor-
mance (i.e., reject AI suggestions), respectively. For interpretation
of the results in Table 2, ranging from zero to one, a value that is
greater than 0.5 means the experience has positive impact on confi-
dence, and a value that is less than 0.5 mean negative impact.
The results in the first row of Table 2 display the influence of the

four experiences on the participant’s confidence in the AI. Expect-
edly, positive and negative feedbacks on the performance of the AI
respectively increase and decrease the participant’s confidence in
the AI (ω1= 0.870 and ω3= 0.117, respectively). Interestingly,

however, any feedback on their own move, positive or negative,
decreases designers’ confidence in the AI (ω2= 0.252 and ω4=
0.292).
The results in the second row of Table 2 show how the four expe-

riences influence the participants’ self-confidence. As expected,
positive and negative feedbacks on their own performance increase
and decrease the participant’s self-confidence (ω2= 0.833 and ω4=
0.188) respectively. When the feedback is about the AI’s perfor-
mance, however, positive feedback slightly increases designers’
confidence in their own ability (ω1= 0.623), while a negative one
significantly decreases it (ω3= 0.195).

Fig. 4 Confidence in AI plots of the (a) hi-lo condition and (b) lo-hi condition. Self-confidence plots of the (c) hi-lo condition and
(d ) lo-hi condition.

Table 2 The optimal parameter values of the confidence model
correspond to the impact of four types of experiences in
AI-assisted decision-making on the participant’s confidence in
the AI and their self-confidence. 0.5 is neutral in that >0.5 is
positive and <0.5 is negative

Impact of the four types of experiences

Positive feedback Negative feedback

AI (ω1) Self (ω2) AI (ω3) Self (ω4)

Confidence in AI 0.870 0.252 0.117 0.292
Self-confidence 0.623 0.833 0.195 0.188
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3.3 Impact of Human Confidence on Artificial Intelligence
Acceptance Decisions. Having found how designers’ confidence
in the AI and in themselves evolve over the course of teamwork
due to dynamic AI performance, this section explores the impact
of these confidences on their decision to accept or reject AI sugges-
tions using logistic regression. There are two predictor variables
which are designers’ confidence in the AI and self-confidence.
There is one binary response variable: decision to accept or reject
AI suggestions; and there are 99 dummy variables that represent
100 subjects. The results reveal that confidence in the AI and self-
confidence are both significantly correlated to the AI acceptance
decisions (coefficient=−0.829 and 0.519, p< 0.05 and <0.05,
respectively). Surprisingly, the more confident designers are in
the AI’s ability, the less likely they are to accept AI suggestions,
and the more confident designers are in their own ability, the
more likely they are to accept AI suggestions.

3.4 Characteristics of Successful Decision-Makers. This
section identifies decision-making patterns unique to successful
decision-makers to gain insight into enhancing the outcome of
AI-assisted decision-making. The participants are classified into
three groups: poor, fair, and good decision-makers, based on their
final team scores. For each participant, this final team score is cal-
culated by summing the scores of the final decisions in the 30 prob-
lems, thereby representing how well the participant accepted or
rejected the AI suggestions. First, for each of the two experimental
conditions, the final team performance scores of its participants are
fit to a normal distribution (see Fig. 5). Then, each condition’s dis-
tribution is divided into three groups (see vertical lines in Fig. 5):
lower quartile, middle two quartiles combined, and upper quartile,
which correspond to poor, fair, and good decision-makers. Respec-
tively, for the hi-lo condition (Fig. 5(a)), there are 12, 27, and 11
participants in these groups, while in the lo-hi condition
(Fig. 5(b)), there are 13, 28, and 9 participants. Therefore, together,
there are total 25, 55, and 20 participants categorized as poor, good,
and fair decision-makers respectively. The results in Fig. 6 and
Table 2 are constructed using such combined data. Each data
point in the plots in Fig. 6 corresponds to one (or more participants
if overlapped) participant.
Figure 6(a) shows the relationship between the participants’ inde-

pendent skill level and the final human-AI team score. Again, final
team score represents goodness of human designer’s decision-
making ability. There is some overlap in the final scores among

poor, fair, and good decision-makers because the plot combines
results from the two experimental conditions that each has its own
upper and lower quartile thresholds. The results in Fig. 6(a) demon-
strate that in this experiment, designers’ decision-making skills do
not reflect their truss design skills. The three levels of decision-
makers show a very similar range of individual performance scores
between−100 and 0.Additionally, Fig. 6(b) displays the relationship
between the participant’s decision-making ability (final team perfor-
mance) and their confidence in their own design ability. The results
show that self-confidence of the three levels of decision-makers
varies over a similar range, in the same manner as their individual
skills. Therefore, successful decision-makers do not show a distinct
level of design ability or confidence in their own design ability.
Then, Fig. 7 illustrates the differences in the probability of

accepting AI suggestions among the varying levels of decision-
makers. It is observed that good decision-makers in the hi-lo condi-
tion have a distinctly high probability of accepting AI suggestions
while those in the lo-hi condition have a distinctly low probability.
This difference in the probability between the two conditions
among the good decision-makers expectedly demonstrates that
they can appropriately determine when to accept or reject AI sug-
gestions. Although this difference also exists among the poor and
fair decision-makers, it is much smaller, meaning that they are
not making as drastic changes to their acceptance rate according
to the observed AI accuracy as the good decision-makers.
Now, a regression analysis is conducted to examine how confi-

dence in AI and/or self-confidence of the good decision-makers
affects their decisions to accept or reject AI suggestions differently
from other decision-makers. First, as shown in the first row of
Table 3, all three groups demonstrate negative correlation between
designers’ confidence in the AI and their probability of accepting
AI suggestions (coefficient=−0.729, −0.848, and −1.05, p= 0.05,
<0.05, and= 0.05, in the order of poor to good decision-makers).
Generally, self-confidence is positively correlated with designers’
likelihood of accepting AI suggestions (coefficient= 0.895, 0.191,
and 1.07 for poor to good decision-makers), however with varying
levels of significance among the three groups. This relationship is
significant among poor decision-makers, not significant among fair
decision-makers, and marginally significant among good decision-
makers (p< 0.05, = 0.5, and= 0.07, respectively).

3.5 Post-Experiment Questionnaire. The responses to the
five questions in the post-experiment questionnaire (see Fig. 8)

Fig. 5 Classification of poor, fair, and good decision-makers in the (a) hi-lo condition and (b) lo-hi condition, using the partic-
ipants’ final team performance scores
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are used to further understand the results of the experiment as elab-
orated in Sec. 4. The first two questions are designed to learn about
the participants’ perception of the AI, while the next two attempted
to learn about their perception of themselves. Then, the final ques-
tion asks about their perception of their own decision-making
process. The responses from the two conditions are compared.
Again, in the hi-lo condition, AI performance changes from 80%
to 20% accuracy two-thirds of the way through the experiment,
while in the lo-hi condition, it changes from 20% to 80% accuracy.

3.5.1 How Helpful Were the Artificial Intelligence Suggestions
in Doing This Task?. 38% of the participants from the hi-lo condi-
tion think the AI suggestions were helpful or very helpful, and 32%
of them think they were unhelpful or very unhelpful. In contrast, in
the lo-hi condition, only 6% of the participants think the AI sugges-
tions were helpful or very helpful, and 58% of them think they were
unhelpful or very helpful. These results may be suggesting that the
first impression (initial AI performance) counts.

3.5.2 Was the Quality of the Artificial Intelligence Suggestions
Consistent? If Not, How Did it Change?. It is important to note that
this question is dependent on how often designers accepted AI sug-
gestions to gain information about AI performance. A big

percentage of participants from both the hi-lo and lo-hi conditions
(44% and 48% respectively) answered “I am not sure” and addi-
tional 6% and 24% answered “Yes, it was consistent” to this ques-
tion. The discrepancy between the two conditions in the number of
participants who correctly identified the change in AI accuracy is
very interesting. While 48% of the participants in the hi-lo condition
correctly reported that the AI got worse over time, only 16% did in
the lo-hi condition. These responses together show that in the hi-lo
condition, there is a dichotomy between those who could and could
not identify the change in AI performance, while in the lo-hi condi-
tion, very few could accurately identify the change.

3.5.3 How Good Were You at Designing Trusses?. The hi-lo
and lo-hi conditions show similar responses for this question. In
both conditions, the largest percentage of participants answer that
they were “bad” at designing trusses, which is then followed by
“very bad”. There are less than 10% of participants think they
were good or very good at designing trusses.

3.5.4 How Good Were You at Making the Final Decision of
Which Move to Choose Between Your Own Move and an
Artificial Intelligence Suggestion?. While the biggest percentages
of participants in both conditions think that they were bad at
making the final decisions, just like in question 3, notably fewer par-
ticipants perceive themselves as “very bad”. Generally, compared to
judging how well they were at designing trusses, the participants are
more positive about how well they made the final decisions.

3.5.5 When Deciding Between Your Own Design Move and an
AI Suggestion, What Did You Consider More: AI’s Ability to Design
Trusses or Your Own Ability to Design Trusses?. In the hi-lo con-
dition, 32% of the participants report that they considered the AI’s
ability more, and another 32% reported that they considered the
AI’s ability and their own ability equally. In contrast, in the lo-hi
condition, 60% of the participants report that they considered
their own ability more, while only 14% and 16% respectively
report “AI’s ability” and “both equally”.

4 Discussion
The discussion elaborates on the major results of this work and

compares them to the results from Chong et al. [21]. The purpose
of Chong et al. [21] was to understand how human confidence in
AI and self-confidence evolve and impact AI acceptance decisions
during AI-assisted decision-making. To achieve this goal, Chong

Fig. 6 Participants’ team performance score (decision-making ability) versus (a) individual performance (task ability) and (b)
confidence in their own task ability

Fig. 7 Probability of accepting AI suggestions among poor, fair,
and good decision-makers
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et al. [21] used a chess puzzle task, in which given a chess board
state, participants needed to make the best next move. As with
the current study, they first selected a move independently
without an AI suggestion, then made a final move decision after
receiving an AI suggestion. For each final decision, feedback was
provided depending on the quality of the move. Although Chong
et al.’s [21] work provided much insight, the design of the study
limits the results to be directly applicable only to AI-assisted
decision-making scenarios with a chess puzzle task. It is
unknown which of and how their results generalize to or are rele-
vant in design settings. Therefore, the current work aims to study
the evolution and influence of human confidence in AI and self-
confidence specifically during AI-assisted decision-making in
design. For this goal, the experiment in this work is designed to
resemble Chong et al. [21], except for the task, which is the truss
design task.

4.1 Differences Between the Chess Puzzle Task and the
Truss Design Task. Despite some similarities such as task proce-
dure (i.e., unassisted then assisted action) and discreteness of prob-
lems (i.e., each problem does not depend on others), the truss
design task and the chess puzzle task have many differences that
may produce inconsistent results between the current study and
Chong et al. [21].One of these differences is thatAI systems are prev-
alently known to be highly proficient at solving chess problemswhile
perhaps not quite as known for their proficiency in designing. In
chess, there are universally accepted, well-known AI algorithms

such as Stockfish that perform better than human experts, but such
algorithms do not exist yet in design, specifically in design of
trusses. Such assumptions about AI systems’ skills in these settings
could influence participants’ confidence and decisions throughout
the teamwork. Secondly, the truss design task does not have an oppo-
nent while chess puzzle task does, possibly bringing about different
considerations during decision-making. Although all problems are
independent in both tasks, when working on chess problems, the
presence of an opponent is implied due to the nature of the game
of chess. Therefore, although a design action is always reversible
under the control of the designer in the truss design task, a chess
move is less so because the opponent may make an action that pre-
vents a reversal. This reversibility of the actions in the truss design
task may place less importance on each action the participants take
than in the chess puzzle task where actions are not always reversible.
Third, the impact of truss design actions is less differentiable than
that of chess moves. Because the objective of the truss design task
to maximize the SWR consists of two conflicting aspects: one to
make the truss stronger and another to make it light, a design
action may be beneficial in one aspect but not in another. This char-
acteristic of the truss design task may lead to difficulties in determin-
ing the overall impact of AI suggested actions and therefore in
deciding whether to accept or reject them. This difficulty is hinted
at by the team and individual performance scores in Fig. 6 which
are both concentrated in lower ranges than the scores in Chong
et al. [21]. Considering the discrepancies listed above, the compari-
son of the results in this study to those from Chong et al. [21] can
reveal insights into which findings are potentially generalizable

Table 3 Regression results between designers’ confidence in AI, self-confidence, and their probability of accepting AI suggestions
for varying levels of decision-makers

Decision-making skill level

Poor Fair Good

Regression against the probability of accepting AI suggestion Confidence in AI −0.729 (p= 0.05) −0.848 (p< 0.05) −1.05 (p= 0.05)
Self-confidence 0.895 (p< 0.05) 0.191 (p= 0.5) 1.07 (p= 0.07)

Fig. 8 Responses from the post-experiment questionnaire
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across different tasks andwhich are unique to each task.Most impor-
tantly for this paper, the comparison shows which results about con-
fidence in AI and self-confidence applies exclusively to design
situations. For each research question, the pertinent results from
this study are first discussed, followed by their comparison to the
results from Chong et al. [21].

4.2 Major Results From the Current Work

4.2.1 Decreasing Trends in Designers’ Confidence. The
current work first answers how AI performance and its variations
affect designers’ confidence in AI and self-confidence during
AI-assisted decision-making in design, given prior proposals that
human confidence is prone to change based on the performance
of the AI [25–28]. The results in this work reveal that designers ini-
tially have relatively high confidence in the AI, which quickly
decreases with poor AI performance but does not increase much
with good AI performance. Self-confidence, however, is hardly
affected by the initial level of AI performance. Then, when the AI
accuracy changes, regardless of the direction of change, designers
become slightly less confident in themselves but remain unaffected
in their confidence in the AI. This directional independence may be
explained by the result from the post-experiment questionnaire that
many participants did not accurately identify the change in the AI
performance. Additionally, in this experiment, neither confidence
in the AI nor self-confidence increases even with good AI perfor-
mance. This lack of impression of good AI performance is also
evident in the responses from the post-questionnaire (Sec. 3.5). In
question 1, 32% of the participants from the hi-lo condition reported
the AI to be unhelpful, even though they mainly interacted with a
proficient AI throughout the experiment. In question 2, 84% of
the participants in the lo-hi condition could not identify the
improvement in the AI performance. Overall, these insights
provide information about how different AI accuracies influence
human confidence in AI and self-confidence and can be helpful in
deploying AIs with appropriate proficiencies into design teams.

4.2.2 Mis-Inference of Information From Feedback. The
results also demonstrate that designers tend to infer faulty informa-
tion from feedback in this study. First, when designers reject the AI
suggestion and receive feedback on their own performance, this
feedback affects their confidence in AI, although it does not
imply any information about the AI’s ability. Both positive and neg-
ative feedback on their own performance result in lower confidence
in the AI. This may be a manifestation of human self-serving bias,
which is the individual’s tendency to “attribute success to their own
personal dispositions and failure to external forces” [29,30]. When
the participants from the study are told that their action is good, they
may attribute this success solely to themselves and in turn lose con-
fidence in the AI. In contrast, when the participants are told that
their action is bad, they may attribute some of this failure to the
AI. Erroneous inference of information also occurs when the partic-
ipants receive feedback on the AI’s performance. Despite the
absence of information about their own ability, the feedback on
the AI’s performance alters designers’ self-confidence in the same
direction as the feedback. This may be favorable from a managerial
perspective if designers are taking responsibility as the final
decision-maker. However, such attribution of responsibility could
hinder human-AI team performance when designers use inaccurate
information to make decisions. The aforementioned findings about
the impact of different feedback on human confidence enable detec-
tion and reasoning of changes in the levels of confidence in the AI
and in themselves during the design process.

4.2.3 Strong Correlation Between Designers’ Confidences and
Their Acceptance of Artificial Intelligence Suggestions. The second
research question then asks how designers’ confidence in the AI and
self-confidence are associated with the probability of accepting AI’s
design suggestions. The results show that both confidences are
strongly correlated to the AI acceptance decisions. First, when

people are more confident in themselves, they are more likely to
accept AI suggestions. This result can be understood by the earlier
results that the participants’ confidence in their own ability increases
only when they receive positive feedback on either themselves or the
AI. This feedback provides neutral to positive information about the
AI, therefore increasing the participants’ likelihood of accepting AI
input. Similarly, with lower self-confidence, the participants are
less likely to accept AI suggestions. Second, it is found that the
more confident designers are in the AI’s ability, the less likely they
are to accept AI suggestions. Borrowing earlier results, the confi-
dence in the AI increases only when the participants receive positive
feedback on the AI’s performance, meaning that oddly, the positive
feedback on the AI decreases the chance of accepting AI input.
Though indefinite, the participants may be making such suboptimal
decisions when accepting or rejecting AI suggestions because the
impact of the AI suggestions is not clearly differentiable in the
truss design task. These insights into how designers’ confidence in
AI and self-confidence are related to the decision to accept or
reject AI suggestions shine light on their cognitive processes
during decision-making and inspire ways to enhance the effective-
ness of AI-assisted decision-making in design.

4.2.4 Characteristics of Successful Decision-Makers. Finally,
the characteristics of poor, fair, and good decision-makers are com-
pared to identify the unique patterns in good decision-making.
There are no differences in the participants’ truss design skills
(summed score of the unassisted actions) or their confidence in
their own design skills (average reported self-confidence) among
the three groups, meaning that these characteristics are not what
leads to good decision-making. However, good decision-makers
show a greater difference in their probability of accepting AI sug-
gestions between the two conditions (hi-lo and lo-hi) than poor
and fair decision-makers, meaning that they are more appropriately
adjusting their acceptance rate according to the observed AI accu-
racy. Despite this unique characteristic of good decision-makers,
their confidence impact the probability of accepting AI suggestions
in a similar manner among the three levels of decision-makers. All
three groups display a negative correlation between the participant’s
confidence in the AI and their probability of accepting AI sugges-
tions, just as in the combined regression result. Self-confidence
has a negative relationship with the likelihood of AI acceptance
among poor and good decision-makers, while fair decision-makers
distinctively show no significant relationship.

4.3 Comparison of the Results to Chong et al.’s Chess Study
(2022). In comparison to the results in Chong et al. [21] that used
the chess puzzle task instead of the truss design task, initial AI per-
formance, both good and bad, affects human confidence in the same
manner. In the initial stages of human-AI teamwork, there are many
results that are consistent across both tasks such as the high starting
confidence in AI, the constant level of self-confidence, and the neg-
ative impact of low AI accuracy on human confidence in AI.
However, the change in AI performance has very different effects
on the participants’ confidence in AI and their self-confidence
depending on the task. In Chong et al. [21], human confidence in
AI shifted in the same direction as the AI performance change,
and self-confidence was only affected by a negative change in the
AI performance. In contrast, in the current study, confidence in
the AI is unaffected, and self-confidence marginally decreases inde-
pendent of the direction of the AI performance change. The lack of
influence of the switch in AI accuracy on the participant’s confi-
dence in the AI in design, unlike in chess, may be because this
switch is not as easily identifiable in the truss design task. This
reason is supported by the result from the post-experiment question-
naire that many designers did not correctly perceive the accuracy of
the AI and its change. Furthermore, while the participants from
Chong et al. [21] showed decrease in self-confidence only with
poor AI performance, the participants from the current work lost
self-confidence even with good AI performance. During the truss
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design task, the participants may plainly be getting discouraged by
the indistinct impact of the AI suggested actions.
Most of the results about the inference of information from feed-

back look the same as in Chong et al. [21], except when humans
receive negative feedback on their own performance. This means
that independent of the tasks, the experiences (and their correspond-
ing feedback) during AI-assisted decision-making mostly affect
human confidence in the AI and self-confidence in a similar
manner. However, negative feedback on human performance
decreased the participants’ confidence in the AI during the truss
design task but had little to no effect during the chess puzzle task.
This difference could be because the cost and benefit of AI sug-
gested actions in the truss design task are less differentiable than
in the chess puzzle task. Learning about their own poor performance
in the task while perceiving that the goodness of design actions is
not obvious, the participants may expect the AI to find the task dif-
ficult, lowering their confidence in the AI.
Generally, the participants in the current study show lower or

more easily decreasing self-confidence and confidence in AI than
those in the chess study. It is important to note that evidently
from the participants’ data, the less differential nature of the
impact of truss design actions may be making the task more difficult
than the chess puzzle task. Most participants in this study received a
final score below ten (i.e., 16 disadvantageous and 14 advantageous
actions), which means that they made more disadvantageous moves
than advantageous ones during the experiment. The participants in
the chess study, however, mostly received a final score below 40
(i.e., 11 disadvantageous and 19 advantageous moves), which
means more of them made more advantageous moves than disad-
vantageous ones than those in the truss study. This lower success
rate in the truss task may explain the lower and decreasing trend
of designers’ self-confidence and confidence in AI in this study
compared to the participants’ confidence in the chess study. This
potential relationship between the success rate and self-confidence
is also supported by the post-experiment questionnaire that there
are less than 10% of participants who thought they were good or
very good at designing trusses. Despite the possible relationship
between the success rate on the confidence levels, the influence of
AI performance on designers’ confidence remains supported as
the results in Table 1 show that even with the difficulty of the
truss design task, e1 increases designers’ confidence in AI and self-
confidence, and e2 increases their self-confidence.
The surprising results about how human confidence in AI and/or

self-confidence are correlated to the decisions to accept or reject AI
input run counter to those from Chong et al. [21]. Although Chong
et al. [21] showed that only self-confidence, not confidence in the
AI, is significantly related to AI acceptance decisions in chess,
both confidences are related to the decisions in the current work
on the design. This difference may be explained by the characteris-
tic of the truss design task that the impact of the suggested design
actions is less clear than in the chess puzzle task. When the good-
ness of the AI suggestions is not as obvious, designers may consider
their confidence in the AI’s ability from earlier interactions more
during their decision-making. Unfortunately, considering their con-
fidence from prior interactions seems to be leading to undesirable
decisions: the higher the confidence in the AI, the less likely they
are to accept the AI input. This relationship between designers’ con-
fidence in AI and their acceptance of AI suggestions is in the oppo-
site direction from the chess study. Additionally, human
self-confidence is associated with the AI acceptance decisions
also in the opposite direction from that of Chong et al. [21]. In
this work, the more the participants are confident in their own
ability, the more likely they are to accept the AI’s suggestion,
while in chess, the participants were less likely to. These different
results may again be because of the indistinct cost and benefit of
AI suggestions in the truss design task, which could be impeding
the appropriate transfer of their confidence levels to AI acceptance
decisions and resulting in unexpected behaviors.
Finally, although the results from this work do not show many

unique characteristics among successful decision-makers, Chong

et al. [21] found a vicious cycle that they tend to avoid, achieving
better results than others. In chess, poor decision-makers fall into
this vicious cycle when interacting with an unskilled AI where
they repeatedly rely on this AI because they attribute blame to them-
selves (decrease in self-confidence), consequently accepting the
next AI suggestion again. However, good decision-makers do not
enter this cycle because, with decreases in self-confidence, they
are less likely to accept the next AI suggestion. In the present
work, like the good decision-makers in Chong et al. [21], all
levels of decision-makers show a positive correlation between self-
confidence and the probability of accepting AI suggestions, there-
fore avoiding the vicious cycle.

4.4 Implications for Design Practice. The insights from this
work can significantly impact the practice of AI-assisted decision-
making in design. First, this work involves much information
about how human confidences change with individual experiences
in AI-assisted decision-making. Such information allows maneu-
vering of experiences to calibrate human confidence in AI and in
them. For example, when designers are suffering from low self-
confidence that may lead to inappropriate reliance on AI input,
experiences that would increase self-confidence might be provided
repeatedly to increase their self-confidence. Second, the detrimental
impact of poorly performing AIs on human confidence shown in
this work may increase the accuracy threshold for including AIs
in design teams. Additionally, the results together conclude that
AI is not a panacea for design problem-solving. Even with high
AI performance, human-AI teams may not reach the desired
design performance level without successful management of
human designers’ confidence levels. According to the results from
this work, some challenges unique to design may include prevent-
ing the drop in designers’ self-confidence and effectively communi-
cating the quality of AI suggestions (especially when it is good) to
designers.

4.5 Limitations and Areas of Future Work. There are some
limitations of this work that provide opportunities for future work.
First, the fit of the dynamic model of human confidence can be
improved. The R-squared value of 0.75 is sufficient for the
purpose of this study which is to understand the impact of different
types of experiences on the change in human confidence levels. To
be used for confidence calibration applications, it is beneficial to
increase the model accuracy by including other factors of human
confidence in the model or by testing different forms of relationship
between the different factors. A second limitation is the broad con-
sideration of AI in this work. This work distinguishes AI from other
types of computational agents by its data-driven approach. For more
AI-specific insights, it will be helpful to explore distinctive proper-
ties of AI systems that best align with designers’ confidence during
problem-solving.
It is important to recognize that the findings may not be general-

izable to all design scenarios because this work only covers one spe-
cific type of design problem. The results can be broadly applied to
short-term, well-defined design decision-making contexts where a
human designer regularly receives AI input. Long-term AI-assisted
decision-making scenarios, where there are breaks with no interac-
tion between humans and AIs, may show differences in human con-
fidence and decision-making and therefore may not be a context that
this work’s results are directly applicable. As long as the quality of
each design decision can be measured and an AI regularly provides
design-related inputs, the insights from this work should help
improve the outcome of AI-assisted decision-making.

5 Conclusion
This work conducts a cognitive study and leverages a quantitative

model to investigate the changes in designers’ confidence in AI and
their self-confidence during AI-assisted decision-making in design

Journal of Mechanical Design MARCH 2023, Vol. 145 / 031401-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/145/3/031401/6937837/m
d_145_3_031401.pdf by U

niversity of C
alifornia Library - Berkeley, Kosa G

oucher-Lam
bert on 11 N

ovem
ber 2022



and how these confidences affect their decisions. The results
demonstrate that during AI-assisted decision-making in design,
designers initially are highly confident in their AI teammates but
quickly become less confident with poor AI performance. Their
confidence in their own ability, however, does not change with
initial AI performance. This paper also shows that when the AI
accuracy changes, the trend of designers’ self-confidence alters neg-
atively independent of the direction of the change while the trend of
their confidence in the AI remains the same as it was before the
change. Furthermore, throughout the teamwork, designers are
inclined to deduce incorrect information from feedback, judging
the AI’s or their own ability based on the feedback given to the
other. Considering such dynamic changes in confidence of design-
ers, confidence in the AI and self-confidence are positively and neg-
atively (respectively) correlated to their chance of accepting an AI
suggestion. Moreover, this work presents many parallels, rather
than discrepancies, in the decision-making characteristics between
different levels of decision-makers. Finally, this work identifies
the findings that are unique to design, as well as those that may
be generalizable across different types of tasks.
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