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A B S T R A C T   

Artificial intelligence (AI) has shown its promise in assisting human decision-making. However, humans’ inap-
propriate decision to accept or reject suggestions from AI can lead to severe consequences in high-stakes AI- 
assisted decision-making scenarios. This problem persists due to insufficient understanding of human trust in AI. 
Therefore, this research studies how two types of human confidence that affect trust, their confidence in AI and 
confidence in themselves, evolve and affect humans’ decisions. A cognitive study and a quantitative model 
together examine how changing positive and negative experiences affect these confidences and ultimate de-
cisions. Results show that human self-confidence, not their confidence in AI, directs the decision to accept or 
reject AI suggestions. Furthermore, this work finds that humans often misattribute blame to themselves and enter 
a vicious cycle of relying on a poorly performing AI. Findings reveal the need and provide insights to effectively 
calibrate human self-confidence for successful AI-assisted decision-making.   

1. Introduction 

The promise of artificial intelligence (AI) systems to pull insights 
from large data has led them to be used in collaboration with humans in 
various decision-making domains involving healthcare, business, mili-
tary, and design (Buch et al., 2018; Kamar et al., 2012; Nagar & Malone, 
2011; Parasuraman et al., 2009; Patel et al., 2019; Zhang et al., 2021). 
Human-AI teams are increasingly deployed to improve joint perfor-
mance and accomplish tasks that neither an AI nor human can solve 
alone (Wilson & Daugherty, 2018). Humans often remain responsible for 
the final decisions due to ethical concerns; therefore, these teams can 
only reach their collaborative potential when human decision-makers 
appropriately accept or reject AI input (Zhang et al., 2020). 

However, humans are prone to error. Their failure to discern when to 
accept or reject AI input hinders team performance. This is especially 
problematic in high-stakes situations where decisions affect human lives 
such as self-driving cars and medical diagnosis (Lee & See, 2004; Par-
asuraman & Riley, 1997; Zhang et al., 2020). For example, in the 2015 
Google car crash, the Google car was hit from behind when the driver 
manually applied the brakes while the car was slowing for a pedestrian 

(Richtel & Dougherty, 2015). Although this crash only resulted in a mild 
whiplash, human’s inappropriate judgement can lead to more severe 
accidents. Not only this, the performance of Watson for Oncology, IBM’s 
cancer treatment recommendation system, varies greatly depending on 
the population and the type of cancer (Strickland, 2019). If doctors fail 
to reject Watson’s faulty recommendations, patients can receive inap-
propriate treatment for their cancer. 

Recent literature points to inappropriate trust as the reason for 
under- or over-relying on AI (Bansal et al., 2019a, 2019b, Dzindolet 
et al., 2003; Hoffman et al., 2013; Lee & See, 2004; Parasuraman & 
Riley, 1997; Siau & Wang, 2018; Zhang et al., 2020), meaning that 
humans accept or reject AI suggestions when they should not because 
their trust for the AI does not match the AI’s trustworthiness. Despite the 
AI capabilities that sometimes outperform human judgment, many 
people still hesitate to trust AI. According to recent surveys, 42% of 
participants lack general trust in AI, and 49% of participants could not 
name any AI product they trust (Dujmovic, 2017). Furthermore, humans 
are highly unforgiving of AI error, subsequently distrusting AI input 
regardless of its quality (Alvarado-Valencia & Barrero, 2014; Dietvorst 
et al., 2015). However, in some cases, people over-trust AI. One major 
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source of this over-trust is high cognitive load in solving complex tasks 
where people increasingly desire to rely on AI and overestimate AI ca-
pabilities (Alvarado-Valencia & Barrero, 2014; Goddard et al., 2012; 
Parasuraman et al., 1993; Zhang et al., 2021). 

Despite the increasing attention, human trust in AI has not been 
understood enough to avoid faulty decisions to accept or reject AI input. 
This understanding has been difficult because of the diverse and abstract 
definitions of trust (Dietz & Den Hartog, 2006; Jonker & Treur, 1999; 
Lewicki et al., 2006; Lewis & Weigert, 1985; Mcknight & Chervany, 
1996). Thus, instead of directly studying trust, this work focuses on two 
types of human confidence that are often discussed alongside trust: 
confidence in AI and self-confidence. Confidence in AI is formed from 
trustor’s perception of trustee’s (in this case an AI) ability to perform a 
given task, while self-confidence contributes to the trustor’s willingness 
to rely on trustee. Confidence in AI and self-confidence respectively 
provide insight into two antecedents of trust proposed by Mayer et al.: 
perception of trustee’s attributes such as ability, and a propensity to 
trust (related to a personal disposition to trust) (Mayer et al., 1995; 
Rousseau et al., 1998). Knowledge about how the two types of confi-
dence evolve as a result of different experiences (e.g., humans 
accept/reject AI suggestions and then receive positive/negative feed-
back) can prompt ways to prevent inappropriate acceptance or rejection 
of AI input by influencing human confidence. 

Prior works related to confidence in AI and self-confidence are 
typically limited to considering constant levels of confidence, not ac-
counting for the highly complex and dynamic nature of human trust in 
AI (Crisp & Jarvenpaa, 2013; Danks & London, 2017; Glikson & Wool-
ley, 2020; Mayer et al., 1995; Schoorman et al., 2007; Yin et al., 2019); 
confidence in AI and self-confidence alter as the AI’s abilities and per-
formance vary based on its capabilities, available data to train the AI, 
and problem-solving situations. An accurate understanding of confi-
dence dynamics is critical to effectively reduce erroneous reliance on AI 
and improve human-AI team performance. 

In order to close this gap in knowledge, this work investigates the 
evolution of human confidence in AI and in themselves, and their impact 
on human-AI decision-making. Specifically, this study explores one of 
the most prevalent collaboration contexts known as AI-assisted decision- 
making, where humans are responsible for the final decision; after 
receiving a suggestion from their AI teammate, humans either accept or 
override the suggestion. In this work, AI is functioning as a “second 
opinion” system where it provides its solution to humans as a second 

opinion to consider. This work presents an empirical study and estab-
lishes a quantitative model to explore the following research questions: 
1) how do changes in AI performance and resulting positive and nega-
tive feedback affect human confidence in AI and human self-confidence? 
2) how are these two types of confidence associated with the probability 
of accepting AI suggestions? and 3) what decision-making pattern dis-
tinguishes those who successfully accept and reject AI suggestions? 

2. Methods 

A human subject study and a quantitative model are used to under-
stand human cognition and AI acceptance behavior during an AI- 
assisted decision-making scenario. The cognitive study is designed to 
reveal the real-time variation in human confidence in AI and human self- 
confidence during AI-assisted decision-making as a result of AI perfor-
mance change. The quantitative model of human confidence is devel-
oped to capture the impact of different experiences during AI-assisted 
decision-making on confidence dynamics. 

2.1. Human subject study 

2.1.1. Experimental task 
Participants are given a chess puzzle task in which they, in collab-

oration with an AI, must make the best chess move given a chess board 
state (see Fig. 1). This task enables a wide range of possible decision 
choices and the unpredictability of the final outcome resulting from the 
current decision, representing many decision-making scenarios in the 
real-world. Furthermore, the availability of an open-source chess en-
gine, Stockfish (https://github.com/official-stockfish/Stockfish), that 
can perform above expert human level, makes the chess puzzle task an 
excellent fit for this study. Though the participants are aware that they 
are working with an AI, the AI is given a gender-neutral name, Taylor, to 
reduce any gender bias. 

Because of its capabilities, Stockfish is used to design the AI team-
mate for the experiment. Given a chess board state, Stockfish uses a 
minimax search tree to look for a list of possible moves. Each move 
suggested by Stockfish has an evaluation score attached to it which 
represents how advantageous or disadvantageous the move is, given the 
current board state. 

Fig. 1. Task procedure. The figure demonstrates the step-by-step procedure of the experiment. Participants initially select a move without AI suggestion (orange 
arrow in the first screen image), receive an AI (i.e., Taylor) suggestion (dark blue boxes), and make their final move (orange arrow in the third image). The final move 
can be the AI suggestion or any other move. After receiving feedback on their final move, participants report their self-confidence and their confidence in the AI. 
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2.1.2. Participants 
100 participants are recruited for (and completed) the experiment in 

accordance with a protocol approved by the University’s Institutional 
Review Board. All participants are fluent English speakers and know 
how to play chess prior to their participation. Informed consent is ob-
tained from all participants before inclusion. 

2.1.3. Experimental conditions 
There are two experimental condition groups: the positive and 

negative AI performance change groups. Participants are randomly 
assigned to these groups, 50 in each group. The two conditions both 
include two AI performance levels: 80% and 20% accuracy, with the 
participants experiencing the two levels in opposite orders. In Condition 
1, AI performance changes from 80% to 20% accuracy, while in Con-
dition 2, it changes from 20% to 80% accuracy. When the AI is 80% 
accurate, for 80% of the time it chooses the best move out of the list of 
moves Stockfish provides. The best move always has a positive evalua-
tion score, meaning that it is an advantageous move. For the other 20% 
of the times, the AI chooses the 7th best move which is ensured to always 
have a negative evaluation score (i.e., a disadvantageous move). 

The chess puzzles in the study are chosen by considering their dif-
ficulty and possible next moves. The publicly available collection of 
Mate-in-4 board states (http://wtharvey.com/m8n4.txt) are first 
explored using the Stockfish engine. Mate-in-4 board states are used to 
ensure that the game has not gotten too close to the end where partic-
ipants can easily see and pick the best move. With the Mate-in-4 board 
states, there is a wide range of possible moves, and the final outcome 
remains unpredictable. For a given board state, the possible moves and 
their corresponding “goodness” evaluation scores are found. Only the 
board states with at least two advantageous and two disadvantageous 
moves are included in the experiment to keep a fairly constant puzzle 
difficulty. It is important to note that although the Mate-in-4 board 
states are chosen to ensure problem consistency, the task in this exper-
iment is to make a single move (not 4) with an AI agent. The description 
of the experimental procedure can be found in Section 2.1.4. 

Following 3 practice chess puzzles, participants in both conditions 
solve 30 puzzles to capture repetitive collaboration scenarios and allow 
for an examination of how individual experience impacts human con-
fidence in the AI and in themselves. After the first 20 puzzles, the AI 
performance level changes, instantiating the dynamic performance of 
the AI. 

2.1.4. Procedure 
The experiment is conducted via Amazon Web Services. Before the 

experiment, all participants are asked to sign an informed consent using 
Google Forms. Then, the participants are provided with the step-by-step 
instruction of the experiment via email. During their 90-min time slot, 
the participants follow the instructions to complete the experiment. 

The participants perform the following procedure (see Fig. 1) for 
each puzzle. First, the participants are asked to select their best move 
without the AI suggestion. This is to collect data about their individual 
chess skill without the AI’s help. Once the participants make the unas-
sisted selection, they receive the AI suggestion and are asked to make the 
final decision to accept or override it. Here, the study is designed so that 
when overriding the AI suggestion, the participants are not limited to 
their unassisted selection but can make any move different from the AI 
suggestion. Next, the participants gain and lose 5 points according to the 
feedback (i.e., advantageous or disadvantageous) they receive on their 
final move. The feedback is given based on the evaluation score 
computed by the Stockfish engine. In the beginning of the experiment, 
the participants are informed about the scoring system and that those 

who receive a score of 40 or above at the end of the experiment will 
receive an additional monetary prize. Finally, the participants are asked 
to report their confidence in their own ability and the AI’s ability in 
solving chess puzzles in a 5-point Likert scale. The confidence questions 
ask: How good are you (or the AI) in making good chess moves? The 5- 
point Likert scale includes answers: very good, good, neutral, bad, and 
very bad, which are quantified as 1, 0.75, 0.5, 0.25, and 0 for model 
fitting. 

2.2. Confidence model 

2.2.1. Concept and structure 
Fig. 2 illustrates the concept structure of the model. The model 

predicts the dynamics of human confidence based on experience, 
accumulated confidence, and bias, inspired by Hu et al.’s dynamic trust 
model (Hu et al., 2019). Our confidence model is applied to both human 
confidence in AI and self-confidence. Depending on the object of con-
fidence (AI or self), confidence, accumulated confidence, and bias terms 
change accordingly, while the experience term stays the same as it is not 
conditional on the object. 

Hu et al.’s model is built for a different type of human-AI collabo-
ration where the AI provides specific information about the problem- 
solving environment from which humans decide to accept or reject 
that information; the humans cannot look for the information them-
selves and are completely dependent on what the AI reports. In contrast, 
our model represents a more complex yet common scenario where 
humans accept or override the AI’s suggestion as humans and AI are 
both working on the same problem-solving task. This means that rather 
than simply deciding to accept or reject the AI report, humans receive 
the same amount of information about the problem as the AI does. The 
AI is therefore functioning as a “second opinion” system in which it 
provides its solution as a “second opinion” for humans to consider. Then, 
humans decide to accept the AI suggestion or alternatively, override the 
AI suggestion to replace with their own solution. Therefore, the pro-
posed confidence model extends Hu et al.’s model, including an entirely 
different set of possible experiences in the experience term (E(n)). 
Additionally, the current model extends to predict not only the confi-
dence in AI but also the confidence in themselves. 

2.2.2. Model description 
The general model equation is as follows (Hu et al., 2019): 

C(n+ 1)=C(n) + αe[E(n) − C(n)] + αa[A(n) − C(n)] + αb[B(n) − C(n)],
(1)  

where C(n), E(n), A(n), B(n), αe, αa, αb ∈ [0,1]. 
The three factors of confidence at trial n: experience (E(n)), accu-

mulated confidence (A(n)), and bias (B(n)), are compared to the confi-
dence at trial n (C(n)) to deduce how each factor would affect current 
confidence. Then the weighted sum of the three difference values (i.e., 
E(n) − C(n), A(n) − C(n), and B(n) − C(n)) is added to the current con-
fidence to calculate the confidence in trial n+1. The weights αe, αa, and 
αa are the rate factors. 

This work mainly explores the model’s experience term. Experience 
refers to the experience humans have with the AI at trial n. In AI-assisted 
decision-making contexts, humans can have one of the following four 
experiences in each trial:  

1) accept the AI suggestion, then receive positive feedback (e1(n));  
2) reject the AI suggestion, then receive positive feedback (e2(n));  
3) accept the AI suggestion, then receive negative feedback (e3(n));  
4) reject the AI suggestion, then receive negative feedback (e4(n)). 
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Therefore, the experience term, E(n), in Eq. (1) is quantitatively 
represented as the sum of these four sub-experience terms with their 
respective weights (ω1, ω2, ω3, and ω4), which are referred to as the 
experience impact factors: 

E(n)=ω1e1(n) + ω2e2(n) + ω3e3(n) + ω4e4(n), (2)  

where e1(n), e2(n), e3(n), e4(n) = 0 or 1,

ω1, ω2, ω3, ω4 ∈ [0, 1],

and 
∑4

n=1
en = 1. 

The values of these sub-experience terms are binary (i.e., 0 or 1) for 
each trial n because each type of experience either happens (i.e., 1) or 
does not happen (i.e., 0). Additionally, the sum of these terms at a trial 
equals to 1, meaning only one of these experiences occurs per trial (e.g., 
accepting the AI suggestion then receiving positive feedback is repre-
sented by e1(n)=1, e2(n)=0, e3(n)=0, and e4(n)=0). 

Accumulated confidence is the confidence levels from the previous 
trials that are accumulated into a value with the time discounting factor 
γ (Hu et al., 2019): 

A(n)= γC(n − 1) + (1 − γ)A(n − 1), (3)  

where γ ∈ [0,1],
and A(0) = C(0). 
This time discounting factor in the range [0, 1] accounts for the 

possible recency bias in which the confidence values from newer trials 
are considered to be more impactful than those from the older trials. The 
accumulated confidence values at trial 0 and 1 (i.e., A(0) and A(1)) are 
equal to the initial confidence because there have not been any updates 
in the confidence yet. 

Bias represents the general bias for AI systems, not for a specific AI 
(Hu et al., 2019). For this experiment, this term is assumed to be con-
stant for simplicity and set to the initial confidence value before the 
experiment starts: 

B(n)=B(n − 1), (4)  

where B(0) = C(0). 

2.2.3. Parameter fitting 
There are 8 parameters in the confidence model: αe, αa, αb, ω1, ω2,

ω3, ω4, and γ. The optimal parameter values (see Table 1) that minimize 
the least squares error of the fit are estimated with the experimental data 
from all trials in the cognitive study. Trust region reflective algorithm 
(Moré & Sorensen, 1983) is employed for parameter estimation. Because 
nonlinear regression is sensitive to the initial guess, the parameter 
estimation process is repeated with varying initial values, confirming 
the estimated parameter values to be consistent. Using the estimated 
parameter values and the initial confidence values, the model iteratively 
computes the human confidence in AI and human self-confidence values 
for each trial in the experiment (see Fig. 3). The mean squared error 
(MSE) and adjusted R-squared value of the confidence in AI model are 
0.0020 and 0.700 respectively, while those of the self-confidence model 
are 0.0012 and 0.478. The distinct R-squared values suggest that there 
might be differences between confidence in AI and self-confidence that 
are not captured fully by the model. A possible difference is that people 
may have more variability in perceiving and reporting their 
self-confidence, as opposed to their confidence in the AI. 

A robustness test is conducted to ensure that the model parameter 
fitting results in Table 1 are robust. 80% of the experimental data (80 
participants) are randomly selected 100 times. Then, the parameters are 
estimated using each of the chosen 80% data. The initial parameter 
values are set as shown in Table 1. The results of the robustness test show 
that the estimated parameters from the 100 trials are consistent with 
minor differences (below 0.05 mean absolute deviation from the fitting 
results in Table 1), confirming that the model parameter fitting results 
are robust. Not only this, notably, confidence in AI and self-confidence 
are in the range of [0,1] in the experiment, which leads to small MSE 
values. 

3. Results 

3.1. Impact of dynamic AI performance on human confidence in AI and 
in themselves 

Fig. 4 illustrates plots of human confidence in the AI and human self- 
confidence from two experimental conditions, with varied and dynamic 
AI performers advising chess moves for different board positions (i.e., 
puzzles): Condition 1 where a good performing AI changes to a poor 

Fig. 2. Concept structure of the confidence model. 
The model includes three major factors of human 
confidence: experience, accumulated confidence, and 
bias. The experience term (E(n)) considers four 
different possible experiences humans can have with 
an AI at trial n. The accumulated confidence term 
(A(n)) represents the confidence levels leading up to 
the current trial n. The bias term (B(n)) is the inherent 
bias towards any AI system or towards themselves at 
trial n. The confidence value of the next trial is 
computed using these three factors.   

Table 1 
Model parameter fitting results. The quantitative model of confidence in AI and self-confidence are fitted to the experimental data.αe, αa, αb are the rate factors of 
experience, accumulated confidence, and bias, respectively. ω1, ω2, ω3, ω4are the experience impact factors of the four type of experiences in AI-assisted decision- 
making. γ is the time discounting factor.   

αe  αa  αb  ω1  ω2  ω3  ω4  γ  

Confidence in AI 0.2672 0.3405 0.05240 0.8439 0.2115 ~0 0.5217 0.3897 
Self-confidence 0.2844 0.4706 ~0 0.5736 0.8284 0.2384 0.2863 0.1147  
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performing one two-thirds of the way through the study (i.e., after 
puzzle 20), and Condition 2 where a poor performing AI changes to a 
good performing one. The participants are uninformed of this perfor-
mance change. The linear fits of the average confidence data before and 
after the AI performance change are used for analysis. 

Fig. 4A and B show that when initially interacting with the AI from 
puzzles 1 to 20, good AI performance does not significantly affect the 
human confidence in the AI (F-test, P=0.9), while poor performance 
decreases it (F-test, P<0.001). After the switch in the AI performance 
after puzzle 20, the trend in the confidence in the AI (i.e., dark blue line) 
alters significantly in both conditions in the same direction as the AI 
performance change. Specifically, the slope changes in the negative di-
rection in Condition 1 (linear regression with interaction, P<0.05) and 
in the positive direction in Condition 2 (linear regression with interac-
tion, P<0.05). 

Fig. 4C and D demonstrate that when initially interacting with the AI 
from puzzles 1 to 20, both conditions do not show a significant impact 
on self-confidence, meaning neither good nor bad performance by the AI 
affects self-confidence (F-test, P=1 and 0.06). When the behavior of the 
AI changes, the impact of this change on self-confidence is different 
depending on the direction of change. When the AI changes to perform 
worse (i.e., Condition 1), self-confidence shows a decreasing trend 
(linear regression with interaction, P<0.05). Yet, when the AI changes 
for the better (i.e., Condition 2), self-confidence is not affected signifi-
cantly (linear regression with interaction, P=0.4). Therefore, the par-
ticipants’ self-confidence changes significantly only when an initially 
good-performing AI starts to perform badly. 

3.2. Impact of different types of experiences on human confidence in AI 
and in themselves 

The model parameters are estimated from the experimental data to 
evaluate the impact of the four types of experiences during AI-assisted 
decision-making on human confidence in the AI and in themselves. 
These experiences include receiving either positive or negative feedback 
on the performance of the AI (i.e., accept the AI suggestion) and those on 
their own performance (i.e., reject the AI suggestion). The estimated 
values of parameters, ω1, ω2, ω3, and ω4, represent the impact of these 
experiences. These values range from 0 to 1, 0.5 meaning no or neutral 
impact; values below 0.5 mean negative impact, and those above 0.5 
mean positive impact. 

The first row of parameter values in Table 2 shows how the four types 
of experiences affect the participants’ confidence in the AI. The 
parameter values of ω1 and ω3 convey that positive and negative feed-
back on the performance of the AI strongly influence the participants’ 
confidence in the AI in the expected direction (ω1=0.844 and 
ω3=0.000). Particularly, negative feedback on the AI performance 
greatly decreases participants’ confidence in the AI. However, when 
receiving feedback on their own move, positive feedback decreases the 
participants’ confidence in the AI (ω2=0.212) while negative feedback 
does not affect it by much (and in fact may increase it) (ω4=0.522). 

The second row in Table 2 illustrates the results for how the different 
experiences affect the participants’ self-confidence. When receiving 
feedback on their own move, there are strong positive and negative 
impact on self-confidence (ω2=0.828 and ω4=0.286, respectively) as 
expected. However, when the participants receive feedback on the AI 
instead, feedback does not translate to self-confidence in an expected 

Fig. 3. Confidence in AI and self-confidence model fitting results in each experimental condition. (A) and (B) are plots of human confidence in the AI in Conditions 1 
and 2 respectively. (C) and (D) are plots of human self-confidence in Conditions 1 and 2 respectively. Each pair (i.e., (A) and (B), and (C) and (D)) uses the same 
parameter values to fit the model to the data. The black data points are the average respective confidence values of the 50 participants in each condition. The error 
bars represent the standard error of the data. The dark blue lines show the average model fitting results with the estimated parameter values among the 50 par-
ticipants in each trial. 

L. Chong et al.                                                                                                                                                                                                                                   



Computers in Human Behavior 127 (2022) 107018

6

manner. Positive feedback on the AI has low impact on human self- 
confidence (ω1=0.574) while negative feedback greatly decreases it 
(ω3=0.238). These results mean that if the participants accept good AI 
suggestions, they are slightly more confident in themselves, and if they 
accept bad ones, they lose a significant degree of confidence in 
themselves. 

3.3. Impact of human confidence in AI and human self-confidence on 
their AI acceptance decisions 

The binary data on the decision to accept or reject the AI suggestions 
are logistically regressed against the confidence in the AI and self- 

confidence data to analyze the impact of these two types of human 
confidence on their AI acceptance decisions. The logistic regression in-
cludes two predictor variables (confidence in the AI and self- 
confidence), 99 dummy variables (100 subjects), and one response 
variable (decision to accept or reject AI suggestion). Results show that 
the participants’ confidence in the AI does not significantly affect 
whether they accept or reject the AI suggestion (coefficient=0.150, 
P=0.5). Rather, it is their self-confidence that determines this decision 
(coefficient=− 1.00, P<0.001). These results are very surprising because 
they overturn the intuitive assumption that humans accept AI sugges-
tions when they are confident in the AI’s ability and vice versa; instead, 
our results show that human self-confidence, not confidence in the AI, 
directs their decisions to accept or reject AI suggestions. 

3.4. Characteristics of successful decision-makers 

Considering teams each consisting of a human decision-maker and 
an AI advisor, the decision-making patterns of the participants with low, 
mid, and high final team performance are compared. The final team 
performance score represents how successfully the participants have 
made the final move. The quality of the final move shows whether the 
participants appropriately accepted or rejected the AI suggestions; 
therefore, low-, mid-, and high-performance teams correspond to poor, 
fair, and good human decision-makers. For each experimental condition, 
the final team performance scores of its participants are fit to a normal 
distribution (see Fig. 5). Then, each condition’s distribution is divided 
into three sections: low 25%, high 25%, and the rest in the middle, 
shown as the orange lines in Fig. 5. For Condition 1, there are 8, 10 and 
32 participants in low, high, and middle sections respectively, while in 
Condition 2, there are 7, 11, and 32 participants in the corresponding 

Fig. 4. Confidence in AI and self-confidence plots of both experimental conditions. Similar to Fig. 3, (A) and (B) are human confidence in the AI plots for Conditions 1 
and 2 respectively, and (C) and (D) are human self-confidence plots for Conditions 1 and 2 respectively. Black data points are the average confidence values of the 50 
participants in each trial. The dark blue lines are the linear fit to the average confidence data before and after the AI performance change (orange line). These dark 
blue lines represent the general trend of incline or decline of the respective confidence. The error bars represent the standard error of the data. 

Table 2 
Model parameter estimates corresponding to the impact of the four types of 
experiences in AI-assisted decision-making on the participants’ confidence in the 
AI and their self-confidence. The quantitative model of confidence in AI and self- 
confidence are fitted to the experimental data. Parameter values ω1 and ω2 

correspond to experiences of receiving positive feedback on the AI suggestion 
and on their own move (i.e., e1(n) and e2(n) in Fig. 2), respectively. Similarly, 
parameter values ω3 and ω4 correspond to those of receiving negative feedback 
on the AI suggestion and on their own move (i.e., e3(n) and e4(n) in Fig. 2), 
respectively. Table 1 shows the complete parameter fitting results.   

Impact of the four types of experiences 

Positive feedback Negative feedback 

AI (ω1)  Self (ω2)  AI (ω3)  Self (ω4)  

Confidence in AI 0.844 0.212a ~0 0.522 
Self-confidence 0.574 0.828 0.238a 0.286  

a Major findings that are elaborated in Discussion. 
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sections. Finally, the participants who fall into each section in the two 
experimental conditions are referred to as poor, good, and fair decision- 
makers; therefore, there are total 15, 21, and 64 participants in each 
category respectively. The data from the two conditions are combined to 
construct the results in Fig. 6 and Table 3. 

Note that not all the poor decision makers’ team performance scores 
are lower than those of the good decision makers because these 

classifications are done separately for the two conditions of the experi-
ment. In the first condition (Fig. 5A), poor decision makers all have team 
performance scores lower than − 27.9, while those in the second con-
dition (Fig. 5B) have scores lower than − 50.8. Additionally, Fig. 6A and 
B below show differing number of data points plotted for each color 
group because of the overlapping data points. For example, in Fig. 6A, 
there is a pair of participants with the same team and individual per-
formance scores among the poor decision makers, resulting in the two 
data points overlapping into one. These participants however do not 
have the same self-confidence, therefore showing as two separate data 
points in Fig. 6B. 

Fig. 6A shows the relationship between final team performance and 
individual skill level. Poor decision-makers (i.e., those with low team 
performance scores) are relatively poor chess players, while good 
decision-makers are spread throughout poor to good chess players. This 
may lead to an assumption that poor and good decision-makers have 
different ranges of self-confidence in their chess skills. However, the 
results in Fig. 6B demonstrate that regardless of their skill level, the 
participants’ self-confidence vary over a similar range, meaning good 
decision-makers can have low self-confidence while poor decision- 
makers can have high self-confidence. 

In addition to the earlier finding that human self-confidence directs 
their decision to accept or reject the AI suggestion, poor, fair, and good 
decision-makers do not show clear differences in their overall self- 

Fig. 5. Histograms of team performance score distribution among the participants in each experimental condition. (A) and (B) show the histograms for Condition 1 
and 2, respectively. The orange lines are the boundaries for the lower 25% cut and the upper 25% cut. Participants whose performance is located to the left of the 
lower orange line, in between the orange lines, and to the right of the upper orange line are classified as poor, fair, and good decision-makers, respectively. 

Fig. 6. Comparison of characteristics among poor, fair, and good decision-makers. (A) Individual vs. team performance score of the participants. Each data point on 
the plot corresponds to one participant. Individual performance scores are calculated using the participants’ unassisted selections before they received AI suggestions. 
Team performance scores are calculated using the participants’ moves after receiving AI suggestions. (B) Self-confidence vs. team performance score plot. The plot 
shows the average self-confidence of the 100 participants. Each data point corresponds to each participant’s average self-confidence in the experiment. 

Table 3 
Regression results between human confidence and AI acceptance decisions for 
poor, fair, and good decision-makers. Results in this table are from the combined 
data from the two experimental conditions. The first row of the table shows the 
regression coefficients between the participants’ confidence in the AI and their 
probability of accepting the AI suggestions. The second row shows the regression 
coefficients between the participants’ self-confidence and their probability of 
accepting the AI suggestions.   

Regression coefficient against the probability of accepting AI 
suggestion 

Low (Poor) Mid (Fair) High (Good) 

Confidence in AI − 0.0737 
(P=0.9) 

0.0820 
(P=0.7) 

− 0.691 
(P=0.2) 

Self-confidence − 1.36 
(P=0.09) 

− 0.813 
(P<0.05) 

1.78 
(P<0.05)  
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confidence. This suggests that the three groups perform differently due 
to the differences in how they translate their self-confidence levels to 
decisions, not their self-confidence itself. Therefore, regression results 
between the participants’ self-confidence and AI acceptance decisions 
are compared among the poor, fair, and good decision-makers. While all 
these three groups show no significant relationship between their con-
fidence in the AI and AI acceptance decisions, there are clear variations 
in the self-confidence results between the groups (Table 3). Notably, 
good decision-makers uniquely exhibit a positive relationship between 
their self-confidence and the probability of accepting AI suggestions, 
while the other participants show a negative relationship. This means 
that good decision-makers differ from poorer decision makers in that 
they show a decision pattern of accepting the AI suggestions when they 
are confident in themselves and rejecting them when they are not. 

4. Discussion 

This paper began by asking how changing AI performance affect 
human confidence in AI and human self-confidence, given the notion 
that they are prone to changes based on the performance of the AI 
(Hancock et al., 2011; Hu et al., 2019; Schoorman et al., 2007). The 
results reveal the detrimental effect of poor AI performance on both 
human confidence in the AI and their self-confidence. First, although the 
participants initially have relatively high confidence in the AI, poor AI 
performance quickly decreases this confidence. This is a significant 
problem because the confidence in the AI is gained back slowly (even 
with subsequent high AI performance) but is rapidly lost. This result 
confirms prior studies that demonstrated that humans tend to show 
“high” initial trust in embedded AI which is difficult to increase but 
decreases with AI error (de Visser et al., 2017; Dietvorst et al., 2015; 
Glikson & Woolley, 2020). This asymmetric impact of low and high AI 
performance on confidence in the AI may be explained by the notion of 
loss aversion in prospect theory: losses loom larger than corresponding 
gains (Tversky & Kahneman, 1991). Although the participants are not 
explicitly informed of the AI performance change, accepting suggestions 
from a poor-performing AI is often followed by a loss of points. As a 
result, this “loss” impacts their confidence in the AI more than the cor-
responding “gain” with a high-performing AI. Second, poor AI perfor-
mance also has a negative influence on human self-confidence. When the 
AI changes to perform poorly, humans lose confidence in the AI and in 
themselves. While it is appropriate to penalize the AI for its poor per-
formance, humans also penalize themselves perhaps for failing to detect 
the AI error and accepting its suggestions. 

Our work also shows that humans tend to misattribute credit and blame 
when they infer information from their experience, as is the case in this 
study. For example, when the experience provides direct information 
about the AI, humans also infer what this experience tells them about 
themselves; similarly, when the experience is about themselves, they 
also infer insight into the AI. Misattribution is first observed when 
humans reject the AI suggestion and receive positive feedback on their 
own performance. Although this positive feedback is on their own per-
formance, the participants lose confidence in the AI. This may be 
because when humans are affirmed in their ability, their increased self- 
confidence leads them to look down on the AI. In addition, when they 
accept the AI suggestion and receive negative feedback, humans lose 
their self-confidence, by which it can be inferred that they are attrib-
uting blame to themselves. This is consistent with the earlier discussion 
that humans penalize not only the AI but also themselves for negative AI 
performance. In response to negative feedback on the AI, they may be 
blaming themselves for failing to detect the AI error. While this misat-
tribution of blame can be beneficial in a managerial perspective as 
humans are properly taking responsibility as the final decision-maker, it 
could be a factor leading humans to inappropriately accept or reject AI 
suggestions. The answers to the first research question open doors for 
strategic maneuvering of AI and feedback to appropriately calibrate 
human confidence, such as decreasing AI accuracy and providing 

positive feedback on human moves to lower their unfittingly high con-
fidence in an AI. 

Understanding human confidence dynamics during AI-assisted de-
cision-making leads us to the second research question: how are human 
confidence in the AI and their self-confidence associated with the 
probability of accepting AI suggestions? The result from our study sur-
prisingly concludes that human self-confidence significantly contributes to 
their acceptance of AI decisions, while their confidence in the AI does not. 
Although self-confidence has repeatedly been recognized as an impor-
tant factor affecting the willingness to rely and therefore human-AI trust 
and use (Bagheri & Jamieson, 2004; Dzindolet et al., 2002; Lee & Moray, 
1994), this work uniquely identifies self-confidence as a more powerful 
factor than confidence in the AI. For instance, while Lee and Moray have 
shown the logit relationship between the difference between trust and 
self-confidence, and the use of automation (Lee & Moray, 1994), they do 
not inform about the individual influence of trust and self-confidence on 
the use of automation. However, our work provides insight that 
self-confidence is most likely the driving source of the logit relationship. 
Therefore, the significant correlation found between human 
self-confidence and the decisions to accept or reject AI suggestions 
highlights the importance of managing human self-confidence over their 
confidence in the AI for successful AI-assisted decision-making. By 
skillfully orchestrating AI performance and human experience using the 
insights from the earlier discussion (e.g., recover from human misattri-
bution of blame on themselves by subsequently providing positive 
feedback on their own moves), self-confidence can be calibrated 
effectively. 

Finally, this work identifies that good decision-makers uniquely display 
a positive correlation between self-confidence and probability of accepting AI 
suggestions; they accept the AI when they are confident in themselves and 
reject the AI when they are not. Although good decision-makers show 
similar self-confidence levels as any others, their decision pattern suc-
cessfully translates self-confidence to decisions. Earlier discussion shows 
that when humans mistakenly accept a poor AI suggestion and receive 
negative feedback, they lose self-confidence (i.e., human misattribu-
tion). Then, poor and fair decision-makers’ probability of accepting the 
next AI suggestion increases, causing them to enter a vicious cycle of 
relying on a poorly performing AI. In contrast, good decision-makers’ 
probability of accepting the next AI suggestion decreases, avoiding the 
vicious cycle. Therefore, methods may be developed to identify good 
decision-makers with such positive correlation between self-confidence 
and probability of accepting AI suggestions, or to cultivate decision- 
making strategies to prevent the vicious cycle of relying on a poorly 
performing AI. 

This work has some limitations that offer opportunities for future 
research. First, the study focuses specifically on the chess puzzles task. 
Extending this study to different human-AI problem-solving applications 
will indicate whether the dynamics of human confidence and its effect 
on adoption of AI advice differ in higher-stakes situations. Additionally, 
the results could be relevant only to this specific experimental design 
where the participants are explicitly and frequently reporting their 
confidence levels. Such explicit repeated reporting does not perfectly 
resemble real-world situations and may influence people’s subsequent 
judgements (Kvam et al., 2015). Therefore, it would be beneficial to 
extend this study to use more inconspicuous approaches to measure 
confidence in AI and self-confidence. Finally, this work focuses on two 
types of human confidence that affect trust: confidence in AI and 
self-confidence. Although this focus is beneficial in gaining detailed 
insights, for a comprehensive understanding of how trust affects 
AI-assisted decision-making, other factors of trust such as personality 
and environment can be explored. 

5. Conclusion 

Overall, the results of this work indicate a human tendency to 
misattribute the blame for poor AI performance to themselves, a 
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significant impact of human self-confidence on their decisions to accept 
or reject AI suggestions, and a resulting vicious cycle that hinders 
effective human-AI decision-making. This research shows that poor AI 
performance decreases human self-confidence which is found to influ-
ence the decision to accept or reject AI suggestions. This misattribution 
exposes many human decision-makers to a vicious cycle of relying on a 
poorly performing AI. Although good decision-makers can break out of 
this cycle, many others cannot as their decreased self-confidence from 
the misattribution inclines them to accept the next suggestion from a 
poorly performing AI. Our results directly affect the success of AI- 
assisted decision-making by providing insight into the cause of human 
mis-reliance on AI. These results also inspire new strategies for confi-
dence calibration to reduce such mis-reliance. Finally, they shine light 
on the significance of human self-confidence in AI-assisted decision- 
making. 
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