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ABSTRACT
Product recalls provide valuable insights into potential risks

and hazards within the engineering design process, yet their
full potential remains underutilized. In this study, we curate
data from the United States Consumer Product Safety Commis-
sion (CPSC) recalls database to develop a multimodal dataset,
RECALL-MM, that informs data-driven risk assessment using
historical information, and augment it using generative methods.
Patterns in the dataset highlight specific areas where improved
safety measures could have significant impact. We extend our
analysis by demonstrating interactive clustering maps that em-
bed all recalls into a shared latent space based on recall descrip-
tions and product names. Leveraging these data-driven tools,
we explore three case studies to demonstrate the dataset’s utility
in identifying product risks and guiding safer design decisions.
The first two case studies illustrate how designers can visualize
patterns across recalled products and situate new product ideas
within the broader recall landscape to proactively anticipate haz-
ards. In the third case study, we extend our approach by employ-
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ing a large language model (LLM) to predict potential hazards
based solely on product images. This demonstrates the model’s
ability to leverage visual context to identify risk factors, revealing
strong alignment with historical recall data across many hazard
categories. However, the analysis also highlights areas where
hazard prediction remains challenging, underscoring the impor-
tance of risk awareness throughout the design process. Collec-
tively, this work aims to bridge the gap between historical recall
data and future product safety, presenting a scalable, data-driven
approach to safer engineering design.

1 INTRODUCTION
Risk analysis is a necessary step in the product development

process. Engineers and designers are encouraged to predict po-
tential hazards using traditional six-sigma approaches to assess
potential failure modes [1]. Nonetheless, consumer products are
often recalled due to design and manufacturing related hazards,
posing a risk of injury and sometimes death [2]. As such, we see
an opportunity to learn from recalled products to observe what
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products fail, and how the failures occur, ultimately providing
engineers and designers historical information of existing fail-
ure modes. This study leverages the United States Consumer
Product Safety Commission (CPSC) recalls database to serve as
a benchmark for novel computational risk prediction approaches
presented herein. We curate a dataset of 6,874 recalls spanning
dates between the years 2000 and 2024, augmenting the retrieved
database information with new descriptors created using a large
language model (LLM). Notably, these recalls account for over
546 million individual product SKUs reported as affected over
the past two decades, underscoring the vast scale and real-world
impact of product safety failure. An example of preprocessed re-
call entry can be found in Appendix A Table 3. We highlight the
use of the dataset and present how it could support risk identifi-
cation in the design process.

Our contributions include: (1) the development of
RECALL-MM, a curated, multimodal dataset of recalled con-
sumer products, augmented through LLM-generated classifica-
tions and visual descriptors, (2) the demonstration of computa-
tional methods for embedding and visualizing recall data to un-
cover patterns in product failures, supported by two case studies
illustrating how these methods can aid risk identification, and
(3) the application of an LLM to predict potential product haz-
ards based solely on visual descriptions, highlighting both the
strengths and limitations of automated hazard assessment. Col-
lectively, this work aims to improve product safety, anticipate
design failures, and support data-driven decision-making in en-
gineering design.

To support further development and evaluation of our
dataset, we make the RECALL-MM dataset and accompanying
experimental code publicly available on GitHub1.

2 RELATED WORK
2.1 Design Datasets

Over the last decade, several large design datasets have been
curated and released to support data-driven design efforts for
product design and other design tasks. The classes of objects
collected, sample size, and modality of the data are the main dif-
ferentiators between datasets in this field.

Shapenet [3], the ABC Dataset [4], DeepCAD [5], and the
Fusion 360 Gallery dataset [6] are among the largest datasets that
contain geometry data and class labels for individual parts and
whole assemblies. The datasets have been widely used for de-
sign automation and geometry generation tasks, and have also
supported other work around ancillary design tasks such as ma-
terials selection [7]. Other smaller datasets have also been cu-
rated around more specific classes of objects, such as car bod-
ies, mechanical components, and bicycles [8–10]. While these
datasets provide valuable structured information on product fea-

1https://github.com/dianabolanos/RECALL-MM

tures, making them a useful starting point for analysis, they also
come with limitations, including incorrect or missing semantic
information, limited number of object classes, and lack of design
context, intent, and criteria, which limits their utility for compre-
hensive risk assessment.

Other design datasets have focused on different modalities,
such as hand-drawn sketches [11, 12], or textual descriptions of
designs [13–16]. Although these datasets focus more on design
rationale, describing the features and aesthetics of the design so-
lutions, they do not explicitly consider design feasibility, and
some are limited by the number of object classes and data quality.

A few multimodal design datasets have been published, built
around graphic design [17], design requirement documents [18],
and descriptions of design changes [19]. These datasets combine
textual descriptions, geometry, images, and design requirements
in various combinations to support design tasks such as editing
3D geometry, interpreting design requirements, and style classi-
fication.

The multimodal dataset collected in this work differs from
prior datasets as it provides textual descriptions of designs, im-
ages, and recall information related to a failure mode of the prod-
uct over a wide range of product classes.

2.2 Data-Driven Risk Analysis
Product recalls have been used to investigate trends in con-

sumer product safety, with a prevailing focus on children’s toys
[20–23]. These studies similarly leverage the CPSC database,
along with the global recalls dataset from the Organisation for
Economic Co-operation and Development (OECD) [24]. Wai
and Uttama [23] present a series of machine learning approaches
for predicting a binary classification of children’s toy safety,
showcasing the potential for data-driven hazard prediction. Our
study expands on this work by investigating trends across multi-
ple product categories, moving beyond a single domain focus.

The automotive industry has also seen a shift towards data-
driven design for predictive maintenance and hazard prevention.
Yorulmus et al. [25] present machine learning approaches for
predicting brake defects from vehicles passing quality assurance
checkpoints, yet exhibiting high rates of customer complaints.
Similarly, [26] demonstrated a multi-label transfer learning ap-
proach by implementing a series of pretrained Convolutional
Neural Networks (CNNs) to predict the binary failure status of
multiple engine components. Both studies rely on failure data to
improve future design of automotive components, demonstrat-
ing the effectiveness of leveraging data for failure mitigation and
design improvement.

2.3 Hazard Identification in Design
The field of risk analysis has been extensively studied and

continues to evolve within various organizational and engineer-
ing domains. A fundamental objective of risk analysis in en-
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FIGURE 1: Process overview of translating database information
into nine distinct data fields.

gineering design is to proactively identify and mitigate hazards
before they manifest as failures or safety incidents. Failure Mode
and Effects Analysis (FMEA) is among the most widely adopted
methodologies employed by organizations to structure system-
atic risk assessments, prioritize potential hazards, and implement
preventive actions [27–29]. First developed in the 1960s by the
aerospace industry [30], FMEAs now serve as an industry stan-
dard tool across various applications, including automotive de-
sign, aerospace engineering, and product development, demon-
strating its versatility in supporting product reliability and safety.
More recent advancements in FMEA methodologies incorporate
computational approaches, such as fuzzy logic, machine learn-
ing, and integrated decision-making frameworks, enhancing tra-
ditional FMEA practices by addressing uncertainties and subjec-
tivity inherent in risk scoring [31]. These improvements continue
to reinforce the importance of hazard identification and risk mit-
igation in complex engineering designs. We further posit that
reviewing historical data can expand the results of risk analysis
activities.

3 METHODS
We focus this section on detailing the steps used to clean

and augment the CPSC database into a multimodal dataset used
throughout the study. Then, we describe the computational meth-
ods used to embed this dataset into a vectorized representation,
allowing for deeper analysis and visualization. Finally, we intro-
duce the methodology for leveraging an LLM to predict hazards
based on visual product information.

3.1 Dataset
The dataset used in this analysis is a curated subset of the US

CPSC recalls database [32]. To ensure consistency and feasibil-
ity for analysis, recalls were filtered based on API accessibility,
the presence of product images, and the timeframe of 2000 to
2024. This filtering process yields a dataset comprising 6,874

recall entries, which accounts for 92.4% of total recalls between
the specified timeframe.

Each entry in the dataset includes essential recall attributes
such as hazard classifications, product categories, remedy types,
historical recall dates, and an associated product image. The
raw CPSC data lacked labeled classifications for each entry. To
address this, we leveraged generative models, specifically GPT-
4o [33], to enrich and structure the data. Figure 1 illustrates
which fields were directly extracted from the CPSC database and
which were augmented using an LLM.

The LLM Modified fields–recall description and prod-
uct name–were refined using GPT-4o to remove brand references
and retain generic descriptions. Additionally, we label the vi-
sual product description field as LLM Generated, as it was
generated entirely by prompting GPT-4o to describe the product
based on its associated image. For classification tasks, GPT-4o
assigned each recall to a product category, hazard category, and
remedy type, selecting from predefined lists. We label this as
LLM Categorized. Hazard and remedy categories were aligned
with CPSC’s own labels, with definitions provided in Appendix
B (Tables 4 and 5). Since the CPSC does not offer standardized
product categories, we developed an 11-category scheme based
on domain understanding, ensuring it broadly covers the land-
scape of recalled products while maintaining consistency with
OECD terminology [24].

During data cleaning, all records were standardized to a pre-
defined schema, ensuring consistent representation of attributes
such as product description, hazard type, and remedy details.
GPT-4o outputs were validated against this schema, with type
and value constraints applied to ensure reliability. Each record
retains its original recall ID, preserving traceability to the source
data and supporting future reference or verification.

3.2 Recall Space Exploration and Visualization
3.2.1 Embedding Product descriptors, specifically re-

call description and product name, were embedded into a nu-
merical latent space using the all-MiniLM-L6-v2 model
from Sentence-BERT [34]. Sentence-BERT is a pre-trained
model that generates fixed-length dense vector representations
optimized for capturing semantic similarity between text inputs.
We selected the all-MiniLM-L6-v2 model as it offers an ef-
fective balance between model size, computational efficiency,
and embedding quality, making it well-suited for large-scale
analyses without sacrificing performance.

3.2.2 Dimensionality Reduction for Visualization
To visualize relationships among products and recall reasons, we
applied dimensionality reduction techniques. Specifically, we
employed the t-distributed Stochastic Neighbor Embedding (t-
SNE) algorithm, chosen for its strength in preserving local struc-
ture and effectively capturing complex, non-linear relationships
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in high-dimensional data [35]. Compared to linear methods such
as Principal Component Analysis (PCA) [36], which primarily
maintain global variance, t-SNE excels at revealing dense clus-
ters and neighborhood groupings, which are paramount features
for identifying semantically similar products and localized recall
patterns. Product embeddings obtained via Sentence-BERT were
projected from their original vector space into two and three-
dimensional coordinates. The resulting visual maps (Fig.5 and
Fig.6) enable exploration of recall clusters, offering insight into
product similarities and hazard trends. While other methods like
UMAP [37] could also be considered, we prioritized t-SNE for
its well-established use in exploratory visualizations where fine-
grained local structure is of primary interest.

3.3 LLM-Based Hazard Prediction
In addition to computational exploration of the recall data,

we evaluate the feasibility of using LLMs to predict potential
hazards directly from product images. Specifically, we focus on
the visual product description field, which contains a textual de-
scription of each product image generated by GPT-4o.

To perform hazard prediction, we prompt an LLM to ana-
lyze the textual description of the image and output all applica-
ble hazard classifications. The model selects hazard labels from
a predefined set of ten hazard categories (Appendix B, Table 4),
ensuring consistency with existing CPSC classifications. The full
prompt used for LLM prediction is provided:

You are a product safety expert.
Identify all potential hazards
for the given product. Provide
output in valid JSON format only,
structured as:

{
‘product’: {product description},
‘predicted hazards’: [List of all

applicable hazards]
}

The predicted hazards field must
only contain hazards from this set:
{all hazards}. Do not leave any
predicted hazards fields empty. If
multiple hazards apply, include all
relevant ones. No explanations -
return JSON only.

Outputs are returned in a strict JSON format, listing the
product description and the predicted hazards. The prompt en-
forces that the model must not leave any hazard fields empty,
encouraging comprehensive identification of potential risks.

Evaluation Metric To quantify the model’s perfor-
mance, we introduce a Relaxed Accuracy (RA) metric:

δi =

{
1, if gi ∈ Pi

0, otherwise
(1)

Relaxed Accuracy (RA) =
1
N

N

∑
i=1

δi (2)

where

N = Total number of products per hazard class.
gi = Single ground truth hazard classification for product i.
Pi = Set of predicted hazard classifications for product i.
δi = Indicator function that equals 1 if the ground truth haz-
ard gi is present in the predicted set Pi, and 0 otherwise.

The RA metric accounts for cases where the LLM predicts
multiple hazards, but the recall dataset provides only one ground
truth hazard per entry. The recall dataset only labels a single
hazard per product, even though products may exhibit multiple
concurrent hazards. Thus, RA prioritizes capturing all realistic
hazards that could apply to a product, rather than penalizing ex-
tra predictions, acknowledging that the recall labels may not list
every possible hazard.

4 RESULTS AND DISCUSSION
To evaluate the reliability of the curated and augmented

dataset, we begin by validating the LLM-generated categoriza-
tions against human-annotated ground truths, ensuring consis-
tency across product, hazard, and remedy classifications. Fol-
lowing this, we analyze aggregate trends within the dataset, ex-
amining prevalent hazards, product categories, and remedy ac-
tions over time. Building on these observations, we then present
three case studies to illustrate different approaches for leverag-
ing the dataset in risk identification and design decision-making.
The first two case studies employ computational methods, em-
bedding recall data into a shared latent space to explore product
relationships and potential risks. The third case study investi-
gates the feasibility of using LLMs to predict potential hazards
based solely on visual context.

4.1 Human Evaluation of Dataset Categorizations
To validate the reliability of the LLM categorizations, we

compare them against ground truth labels derived from three
independent human annotators. Each annotator performed 100
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FIGURE 2: Data metrics from 6,874 recalls spanning 2000 - 2024 recall dates.

classifications for each task, amounting to 900 annotations. To
establish a ground truth, we employed majority voting across the
three annotators’ labels for each classification task (product, haz-
ard, and remedies). We assessed inter-rater reliability by evaluat-
ing Fleiss’s Kappa, which yielded coefficients of 0.71 for product
classification, 0.80 for hazard classification, and 0.85 for reme-
dies classification. These scores indicate substantial to almost
perfect agreement, based on standard interpretation thresholds.
Given this high level of consistency, majority voting was deemed
appropriate to consolidate the annotations. Items where no ma-
jority agreement was reached (5 for product, 4 for hazard, and 0
for remedy) were excluded from further analysis to maintain the
integrity of the ground truth labels.

With the ground truths labels established, we now compare
against the LLM categorizations. Using Cohen’s Kappa, we ob-
served almost perfect agreement across all three classification
tasks, with coefficients of 0.82 for product classification, 0.91 for
hazard classification, and 0.90 for remedies classification. These
strong agreement levels indicate that the LLM’s predictions align
closely with human judgment, achieving a level of consistency
comparable to expert annotators. Given these results, we are
confident in the robustness and accuracy of the LLM-generated
outputs and proceed to use them for subsequent analyses in this
paper.

4.2 Analysis of Recall Classifications
To analyze patterns in product recalls, we first aggregated

the dataset across four dimensions: hazard classifications, prod-
uct categories, remedy classifications, and recall year. These
aggregations are visualized in Figure 2, allowing us to identify
prevalent hazards, frequently recalled product types, common in-
dustry remedies, and temporal trends in recall activity.

Additionally, to explore relationships between product cat-
egories and associated hazards, we generated a hazard-product
co-occurrence heatmap (Figure 3). This visualization highlights
where certain hazards are disproportionately concentrated within
specific product types, offering insight into recurring failure
modes and industry-specific safety concerns.

Examining hazard classification, fire, falling and choking
emerged as the most prevalent hazards, suggesting a need for im-
proved foresight in anticipating these failure modes. Focusing on
fire, we also see from Fig. 3 that the strongest correlations come
from electrical and home appliances. This aligns with existing
literature indicating heightened risks of household fires due to
electrical failures in sockets, plugs, and wiring, as opposed to
householder carelessness [38].

Within product classification, the high frequency of recalls
in home appliances and toys children indicates particular vulner-
ability to hazards faced within the average US household, indi-
cating the pressing need for safer design of products intended
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FIGURE 3: Correlation matrix of ground truth product and haz-
ard classifications.

for vulnerable or high-use demographics. A study conducted by
Anwar [39] also relied on the CPSC database to examine the
harms resulting from high recalls in the toy industry. This study
found that while most toys were manufactured in China, a vast
quantity of toys were designed in the US, leading to harms re-
lated to choking and lead poisoning as primary concerns. This
analysis aligns with our findings, emphasizing the importance of
stronger safety precautions when designing consumer products.
Interestingly, the heatmap also shows lower recall frequencies
for categories such as tools hardware and outdoor equipment,
suggesting a possibility of heightened risk awareness and more
conservative design practices within these industries.

The prevalence of refund as a remedial action indicates a
preference towards immediate consumer safety, likely chosen
when repairs or replacements are insufficient for risk mitigation.
The substantial use of repair and replace remedies further sug-
gests a widespread industry practice of addressing safety con-
cerns through corrective product interventions rather than solely
financial compensation. Kubler et al. [40] conducted a study to
observe the effect of product recalls on brand loyalty. Results
found that consumers valued transparency and convenient han-
dling of the recalled product.

The temporal analysis revealed an apparent peak in recall
incidents around 2005, followed by a general downward trend
with fluctuations thereafter. This trend may reflect enhanced reg-
ulatory interventions, evolving industry standards, or changes in
manufacturing practices and quality control measures. Notably,

FIGURE 4: Embedding space of recall descriptions labeled by
product categories.

the recent uptick observed post-2020 signals the potential effects
of disruptions in supply chains due to global events.

Taken together, these results emphasize key areas for
improved product safety. Recalls in categories such as
home appliances, electrical, and toys children underscore the
need for more proactive hazard anticipation during product de-
sign. Furthermore, the correlation patterns revealed by the
heatmap suggest potential value in cross-domain learning: de-
signers may benefit from examining hazard trends in adjacent
product sectors to better anticipate potential risks.

4.2.1 Case Study 1: 2D Latent Space of Recall
Descriptions In this case study, we examine the embed-
ding space of the recall description field to explore how tex-
tual recall data can reveal underlying patterns beyond prede-
fined hazard classifications. We specifically chose to embed re-
call description to augment and challenge existing groupings,
offering an opportunity to uncover nuanced relationships within
the dataset. Figure 4 presents a latent space representation of
all 6,874 recall description texts, revealing natural clusters that
broadly correspond to different product categories.

To illustrate how product domains influence the structure of
this space, we highlight two specific examples in Figure 5. In
Figure 5a, we focus on the product categories electrical (black)
and clothing accessories (gray). Here, we observe minimal over-
lap in the embedding space, reflecting distinct recall descriptions
and associated hazards. For example, recalls within the elec-
trical category predominantly reference fire hazards, resulting
in a more cohesive clustering pattern. In contrast, the cloth-
ing accessories category exhibits multiple distinct clusters, re-
flecting a wider variety of recall reasons, such as choking hazards
due to detachable components. This divergence underscores how
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a) b)

Snaps on the jacket can detach,

posing a choking hazard to young

children.

The recalled amplifier’s wiring can 

overheat, posing a fire hazard.

The boots can release from

the binding unexpectedly, 

posing a fall hazard to the user.

Incorrect screw provided for

assembly, leading to potential

risk of child falling or entrapment.

FIGURE 5: a) Embedded recall descriptions of electrical (black) and clothing accessories (gray). b) Embedded recall descriptions of
baby products (blue) and sports recreation (purple). Descriptions are denoted for each example, showcasing distant (a) and near (b)
recall descriptions across different product categories.

certain domains exhibit unique, domain-specific risks, while oth-
ers exhibit larger diversity in risk possibilities.

Figure 5b highlights a case where recall descriptions from
different domains show considerable overlap. Specifically, the
categories baby products and sports recreation share similari-
ties in recall descriptions, often referencing issues related to un-
secured assembly constraints that pose risks of falling or en-

TABLE 1: Recall description diversity of each product category
as measured by Convex Hull area in 2D scaled embedding space.

Category Normalized Area

TOYS CHILDREN 11.848

SPORTS RECREATION 11.009

TRANSPORTATION 10.486

HOME APPLIANCES 10.169

TOOLS HARDWARE 9.776

OUTDOOR EQUIPMENT 9.485

BABY PRODUCTS 9.219

FURNITURE 9.111

OTHER 8.872

CLOTHING ACCESSORIES 8.712

ELECTRICAL 6.688

trapment. Despite the differing nature of these product types,
the commonality in risk profiles suggests valuable cross-domain
learning opportunities. Designers working in either space could
benefit from studying hazards in the other, enabling a more com-
prehensive approach to safety.

To quantitatively contextualize these findings, we calculate
the spread of recall descriptions for each product category us-
ing Convex Hull analysis. Table 1 reports the normalized ar-
eas for each category, offering a metric for the diversity of re-
call descriptions. This approach, informed by prior work on di-
versity metrics in embedding spaces [41], enables a compara-
tive assessment of risk variability across categories. Notably, the
toys children category exhibits the largest normalized area, indi-
cating a wide range of distinct hazards associated with children’s
products. This reinforces the need for cautious safety considera-
tions in the design of children’s toys.

4.2.2 Case Study 2: 3D Latent Space of Product
Name We demonstrate the potential to move beyond passive
data exploration by developing an interactive visualization tool
that situates new product ideas within the context of historical
recall data (see Fig. 6). This visualization embeds all prod-
uct descriptors—specifically product name—into a shared three-
dimensional latent space using t-SNE. When a designer inputs a
new product concept, the system embeds the input text into the
same space and projects it alongside past recalled products. We
chose to embed product name as it typically conveys precise, yet
high-level semantic information, making it particularly suitable
for early-stage ideation.

For instance, an engineering team might propose a product
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“A bike suspension made of aluminum alloy”

FALLING
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Recall Reason: The steel steerer ...
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FIGURE 6: 3D embedding space of product name colored by hazard class. An example is shown identifying similarities between a new
product and existing products with recall information provided.

idea described simply as “a bike suspension made of aluminum
alloy” without fully developed specifications. This tool allows
them to position that idea within the landscape of similar histori-
cal recalls, providing insight into neighboring products and their
associated hazard classifications. By visualizing these relation-
ships interactively, designers can proactively identify potential
risks, explore relevant precedents, and make more informed de-
sign decisions. Ultimately, this integration of recall data into the
early design process supports safer, more responsible product de-
velopment.

4.2.3 Case Study 3: LLM Hazard Prediction In the
third case study, we evaluate the ability of LLMs to predict po-
tential hazards based solely on a product’s text description of
the image. Using the approach detailed in Section 3.3, the LLM
analyzes the visual product description field and outputs hazard
classifications drawn from the predefined list of categories.

The aggregated frequencies of the LLM-predicted hazard
classes are shown in Fig. 7. To assess predictive performance,
we compute the RA metric (Eq. (2) across all hazard classes.
The per-class RA scores are summarized in Table 2, demonstrat-
ing strong overall predictive performance with an overall RA of
0.73. The results indicate strong predictive capabilities within
several hazard categories, with particularly high RA scores ob-
served for choking (0.93) and crash (0.91) hazards. Conversely,
the poisoning hazard class yields the lowest RA score of 0.32.

The relatively low RA scores for certain classes suggest that the
model exhibits selectivity in its predictions and is not simply as-
signing all possible hazards to every product.

TABLE 2: Accuracy per class and overall relaxed accuracy.

Hazard Classification Relaxed Accuracy

BURN 0.59

CHOKING 0.91

CRASH 0.93

CUTS 0.65

FALLING 0.85

FIRE 0.74

H.R.E. 0.74

IMPACT 0.87

OTHER 0.46

POISONING 0.32

S.E.M. 0.49

Overall Relaxed Accuracy 0.73
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FIGURE 7: Heatmap showing correlations between LLM pre-
dicted product and hazard recalls.

Further examination of Figure 7 reveals that the model rarely
predicts poisoning hazards for products such as children’s toys.
However, cross-referencing with actual recall data (Fig. 3) shows
a substantial number of poisoning-related recalls, particularly
within the children’s toys category. This discrepancy highlights
a critical limitation: certain hazards, like poisoning, may not be
visually apparent and thus are underrepresented in LLM predic-
tions. The model’s difficulty in predicting non-visible hazards
mirrors how consumers often rely on visual inspection to assess
product safety. This highlights a critical need for both transpar-
ent hazard communication and proactive design strategies that
address risks not readily apparent through appearance alone, par-
ticularly in preventing latent hazards such as poisoning.

5 DATASET USE CASES AND FUTURE APPLICA-
TIONS FOR ENGINEERING DESIGN
There are several promising avenues to extend and apply this

work. First, augmenting the CPSC dataset with globally recalled
product data, such as the OECD Global Recalls Portal [24],
would allow for a more comprehensive cross-national analysis.
This could reveal broader patterns in product failures and facili-
tate comparative studies across regulatory environments and cul-
tural contexts.

Additionally, while the methods presented demonstrate fea-
sibility in organizing and classifying recall data, validating their

effectiveness in real-world design and safety processes remains
an open opportunity. Future studies could engage with industry
practitioners to assess how historical recall data—structured and
augmented as shown here—can be integrated into existing risk
analysis workflows. Specifically, measuring where practitioners
derive value would provide actionable insights.

The multimodal nature of the dataset could also support
additional work with visual language models (VLMs). VLMs
could be used to predict a product’s hazard and recall risk, simi-
lar to Case Study 3 but with additional visual cues from the prod-
uct’s image. Future studies could determine whether visual or
textual cues provide stronger signals for this task. Since directly
feeding the image to the VLM for hazard prediction may yield
different results, future work could compare these two pipelines
systematically, assessing whether the intermediate textual repre-
sentation improves hazard specificity and alignment with human
judgment.

In addition to analyzing past recalls, this dataset and classi-
fication pipeline could also be used proactively to improve future
product design. For instance, integrating recall-informed haz-
ard classifications into early-stage product requirement genera-
tion may improve safety considerations from the outset. This
could involve coupling the dataset with LLM generated user re-
quirements [42] to ensure risk factors identified in past recalls
are embedded into design requirements.

The dataset can further support developing detailed user per-
sonas based on specific recall incidents and hazard types (inte-
grating into works such as [42]). By examining product recalls
through the lens of potential user interactions, designers could
construct user personas representative of individuals most likely
to encounter or exacerbate certain hazards. For example, exam-
ining products recalled due to choking hazards might inform the
creation of personas representing families with young children or
elderly individuals with limited mobility, allowing designers to
conduct roleplay analysis and proactively consider how different
user behaviors and demographics might interact with products to
induce hazardous situations.

Although it was not used in this work, the rem-
edy classification metadata included in the dataset could be used
to train a model useful to design practitioners in determining an
appropriate solution once a recall-level hazard has been found.
Further, future work could explore embedding additional multi-
modal fields, such as the visual product description, into a uni-
fied vector space. Doing so would support more detailed simi-
larity analyses, helping designers quickly identify potential risks
based on visual and textual product features. Investigating the
downstream implications of these embeddings – such as their ap-
plication in automated hazard detection or AI-augmented design
tools – presents another valuable research direction.

Ultimately, by refining these methods and integrating them
into decision-making pipelines, this research could contribute to
addressing future challenges in product safety, thereby encourag-
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ing a practice of proactive, data-driven risk mitigation in product
design and development.

6 CONCLUSION
This work demonstrates the feasibility and value of leverag-

ing historical product recall data to identify potential hazards in
consumer products. By analyzing recall records, we aim to pro-
vide designers and engineers with actionable insights into com-
mon failure modes and safety risks, ultimately informing safer
and more robust product development. Specifically, we advocate
for the integration of publicly available datasets into the early
stages of the design process, where risk identification is often
most critical yet under-informed.

One of the key challenges in early-stage design is antic-
ipating latent hazards that may not be immediately apparent.
Through three distinct case studies, we illustrate the utility of
computational and LLM-driven methods for interacting with the
dataset. These case studies highlight different modalities of
engagement: analyzing textual recall descriptions, embedding
product names for similarity assessment, and predicting poten-
tial hazards from images. These studies demonstrate approaches
for understanding not only what products fail, but how those fail-
ures manifest.

By integrating historical recall data into the design pro-
cess, we present a scalable and data-driven approach to im-
prove product safety, anticipate failure modes, and support risk-
informed decision-making. This research lays the groundwork
for future efforts aimed at embedding recall-informed analyses
into design workflows, ultimately fostering proactive and data-
supported risk mitigation in engineering design.
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Appendix A

TABLE 3: Example of a recall entry from the curated dataset.

Field Value

recall number 14259

recall date 2014-08-20

recall description
The length adjustment buckles release unexpectedly, causing the item being stored to
fall and injure people nearby.

product name Kayak and watersports storage hanger

product quantity 10,000

remedies
Consumers should stop using the recalled storage hangers and return them to the place
of purchase for a full refund or replacement.

visual product description
The product consists of a pair of straps made from blue and black fabric, each approx-
imately 1 inch wide and 84 inches long when unbuckled. They feature plastic snap
buckles for length adjustment and plastic-coated steel S-hooks for hanging.

product classification SPORTS RECREATION

hazard classification FALLING

remedies classification REPLACE

product image
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Appendix B

TABLE 4: Hazard classifications and definitions.

Hazard Classification Definition

Fire Use of the product may lead to a fire or the product violates federal fabric
flammability regulations.

Burn Use of the product may lead to experiencing burns.

Heat-Related Explosion (H.R.E.) The product may explode unintentionally.

Falling Use of the product may cause an unintentional fall.

Poisoning Use of the product may lead to poisoning.

Crash Use of the product may lead to an unintentional crash.

Choking Use of the product may lead to choking, or the product violates federal toy
safety standards, or the product violates federal children clothing standards
(drawstrings).

Cuts Use of the product may lead to unintentional cuts and/or lacerations.

Safety Equipment Malfunction (S.E.M.) The safety product does not operate as intended and use of the product may
lead to injury or death.

Impact Use of the product may lead to an unintentional impact that may cause injury
or death.

TABLE 5: Remedy classifications and definitions.

Remedy Classification Definition

Refund A customer may receive a full or partial refund, or gift card for the recalled
product.

Repair The company is offering a repair to the recalled product.

Replace The company is offering a replacement for the recalled product in the form of
a new product or other products of similar value.

Dispose The product should be thrown out or recycled.

New Instructions (N.I.) The company will issue new instructions on how the customer can make the
recalled product safe.

Remedy No Longer Available (R.N.L.A.) The recalled product should be thrown out or recycled.
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