J. Mech. Des.

Investigating Complex Sketch Recognition Strategies
for Developing Future Design Tools

Gaélle Baudoux'

University of California, Berkeley

360 Hearst Memorial Mining Building, CA 94720 USA
gbaudoux@berkeley.edu

Kosa Goucher-Lambert

University of California, Berkeley
6179 Etcheverry Hall, CA 94720 USA
kosa@berkeley.edu

ABSTRACT

Despite recent advances in multi-modal Al technology, there remains a significant gap in their ability to be
incorporated into complex design and engineering work. One such challenge relates to contexts where
sketch-based inputs are desirable, due to the difficulty in recognizing freehand sketches or interpreting
underlying human intent. To elucidate requirements for emerging sketch-based Al systems for complex
design context, we consider an architectural design case-study. Using a Wizard of Oz experimental
paradigm, we substitute the “tool” with human agents and conduct a lab-based study in which professional
architectural designers complete a design brief using this “tool”. Here, the human agents execute functions
such as recognizing freely produced design plans and perspective drawings for downstream applications
(e.g., generating inspirational images or high quality renders). Observing the human agents performing the
sketch recognition task, results demonstrate that agents not only rely on visible sketch elements (i.e., lines)
and architectural drawing codes, but also on their memory of previous lines and their knowledge of the
design brief to comprehend perceived lines. Agents gradually develop an understanding of the designed
artifact, but also of the designer's intentions. These activities are crucial for the agent to obtain a functional
model of the designed object, beyond a purely topological and geometric perception model. Insights about
this human workflow bring new potential techniques of sketch recognition for design and engineering tasks,
informing the inclusion of new resources within Al tools.
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1. INTRODUCTION

Preliminary design phases define a significant portion of the final performance of
a designed artifact, impacting both the economy and environmental impact of a project
[1]. Therefore, it is crucial to make appropriate design choices from the early phases. To
meet this need, we work on design aid to improve preliminary design, specifically in
generating and evaluating solutions. A promising approach, according to several
researchers [2-8], is to use creative ideation and automate analogical reasoning. Indeed,
idea generation can be driven by analogical reasoning, a recognized powerful design
strategy that has been studied extensively over the last 20 years, with reemerging interest
in recent work [3-7]. Visual analogies, in particular, can improve design quality and the
performance of proposed solutions [8], as well as enhancing creativity by overcoming the
fixation problem. This cognitive strategy (Fig. 1) involves pairing an inspirational source
and a characteristic of the artifact to be designed, and then transferring certain properties
of the source-object to integrate them into the designed object [2]. Analogical reasoning
is often embedded within domain-specific processes, such as precedent analysis in
architecture. In this process, the study and reinterpretation of existing design artifacts, by
drawing inspiration from prior works and applying abstracted principles to new design
contexts, function both as an inspirational strategy and a design aid.
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Fig. 1: Pairing scheme in analogy [2].

In the pathway of automating and stimulating visual analogies, Al image
generators are a promising tool to support creative activity. These generative software
programs (e.g. Midjourney or DALL-E) produce images based on text commands, known
as prompts [9]. While these tools are not inherently performing analogy-making in the
cognitive sense, by actively proposing design features in complement of representing the
features prompted, the generative output becomes an external stimulus for analogical
transfer, and thus serve as an inspirational design aid. Although text-to-image generators
offer potential for augmenting ideation, they have limitations. As these generators work
on the basis of text prompts, pausing to write a command to receive images may disrupt
the designer's flow of thought when sketching. Furthermore, it has been observed by
researchers that formulating accurate textual prompts can be challenging in practice. This
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limitation affects the suitability of the received images to the designers' requirements [9,
10]. Indeed, in design especially, whose primary means of representation is often more
geometric and diagrammatic than based in text, this challenge is compounded by the fact
that the semantic expressiveness of natural language often falls short in capturing the
inherently spatial, geometric, and diagrammatic nature of design thinking and
representation. Words may fail to fully convey the structural, relational, and
compositional intentions embedded in a sketch or a plan. This limitation in linguistic
expression further motivates the development of sketch-based interfaces, which are more
aligned with the designer’s natural workflow and cognitive strategies. Our broad research
proposes to investigate the potential of sketch-based generative Al tools that work with
sketched inputs as complex as whole plans or elevation perspectives to generate the
inspirational images for designers.

Despite recent advances in ideation stimulation tools and generative Al, there is
still a significant need in complex design domains where freehand sketches remain the
primary medium of ideation, for externalizing and refining abstract ideas [11]. Across
domains, whether architectural, mechanical, or product, design shares foundational
characteristics: ambiguity in early ideation, reliance on visual representation, and the
need to iteratively develop and evaluate functional relationships among components.
While this study is situated in an architectural context, it investigates cognitive and
interpretive mechanisms that are domain-agnostic and central to any complex design
process. The architectural domain presents an interesting case study for improving
multi-modal Al tools and bridging the gap in the need for sketch-based tools with
complex and freely produced sketched inputs. We thus envision a future tool for complex
design environment (e.g. architecture) that suggests inspirational images, based on the
actual drawings used in these creative phases, to improve generation and evaluation of
ideas. Figure 2 illustrates the prospective design activity with such a tool and which part
of this process will be performed under Wizard of Oz.
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Fig. 2: Diagram of the prospective design activity with Wizard of Oz sketch-based tool
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In our previous work [12,13], we demonstrated the added value of using sketch
input for non-disruptive tools. We indeed studied the design activity under sketch-based
inspirational stimuli, and we demonstrated that sketch-based AI tools retain the
well-known benefits of generative Al for ideation while overcoming their limitations by
sending images that are more accurate to the object designed and with no disruption of
the design flow [12,13]. In these studies, sketch-based generated images were also used
for larger activities than only idea generation. However, we now need to study how to
achieve the recognition of design sketches. As such, this study is positioned prior to any
prototype development, and the focus in this paper is on the human agent's sketch
recognition activity. The purpose of this paper is to explore the potential features needed
for a tool for architectural design sketch recognition and inspirational image generation,
with the goal of gaining a better understanding of the necessary inputs, including data and
rules, to improve architectural line-by-line sketch recognition. To accomplish this, we
assume that observing the human workflow in performing the task of interpreting
architectural line-by-line sketches could provide the necessary information. This
assumption is grounded in prior research in design cognition and human-computer
interaction, which has shown that studying expert behavior and human agent strategies
can inform the development of intelligent tools [14, 15].

With the overall broad goal to move design aids forward by automating searches
for inspiration with highly project-relevant stimuli of analogical reasoning, which calls
for sketch-based systems capable of interpreting early-stage design input, a necessary
first step in this trajectory is to gain insight into how to overcome current technical
limitations in sketch recognition—specifically, by informing how systems might interpret
the evolving functional and semantic content of freehand drawings. To inform this, we
aim to answer the following two research questions:

- What strategies and knowledge do human agents mobilize to understand the semantic
meaning conveyed by graphic lines in design sketches?

- What procedures do human agents develop to transfer the features of sketched
representations into a mental model of the design represented?

To gain insight into the functionality of sketch-based generative Al tools, this
paper begins with a background section on sketching in design, design cognition, and
design theory (section 2). It will then cover some key elements of current research on
sketch-based Al tools for architectural design. This establishes what is currently possible
and what does not yet exist (section 3). Next, a Wizard of Oz experiment is set up,
substituting the tool with human agents, to observe the human workflow in performing
the architectural sketch recognition task (section 4). By understanding the resources and
cognitive strategies used by human agents to interpret complex sketches, we provide
insights about procedures and rules, but perhaps more interestingly about the knowledge
bases mobilized, as well as the challenges involved with such a complex task of sketch
understanding (see section 5). The research outcomes will be valuable for various design
domains, offering new possibilities for shaping Al tool workflows when textual inputs
are not applicable, and other modalities of interaction would be more applicable (e.g.,
sketches), while keeping human agency over the interactive process intact.
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2. THEORETICAL BACKGROUND: SKETCHING AND DESIGN COGNITION

This section summarizes theoretical foundations from design cognition and design
theory that are particularly relevant for Al systems intended to interpret freechand design
sketches. Preliminary design phases rely heavily on external representations, particularly
freehand sketches, not only as a means of expression but as tools for reasoning, memory,
and decision-making. Within cognitive design research, designing is understood as a
process distributed between internal and external cognition [8]. The designer develops
internal mental representations while also producing external ones, like sketches,
diagrams, and drawings, which act as cognitive artifacts [8], structuring the evolution of
the design concept. These external representations materialize information in tangible,
persistent, and manipulable forms, allowing it to be reformulated, reinterpreted, and
rediscovered [8]. They reduce mental load by shifting cognitive effort to perceptual
processes and the environment, thereby supporting faster and more efficient reasoning
without requiring continuous verbalization or internal recall. Through this
externalization, sketches contribute directly to ideation by supporting exploratory
behavior and sustaining ambiguity—a key condition for creative design thinking [3].
Moreover, the way information is graphically structured influences how it is perceived
and acted upon, shaping the designer’s behavior [8]. In this sense, the sketch not only
represents an object, but also serves as a dynamic and evolving interface between thought
and action. Its apparent incompleteness allows for reinterpretation and reframing, often
revealing latent ideas or prompting new directions. Sketches also function as temporal
traces of the design process, anchoring past decisions and mediating dialogue between
designers and stakeholders. These traces become intermediate objects, resources that
carry forward the project’s conceptual development and support its ongoing
transformation. Over time, sketches tend to evolve, progressively clarified into more
synthetic, communicable forms [11]. This transformation involves multiple layers of
refinement: graphical simplification, reduction of ambiguity, increased precision, and,
often, the selection of a preferred solution among alternatives [11]. Far from being a
purely graphical task, this process reflects an intensification of commitment and a
reconfiguration of the design problem, aligning representational clarity with cognitive
and communicative needs.

3. CURRENT SKETCH-BASED AI TOOLS

This section outlines a state-of-the-art of sketch-based tools within the context of
our design research area, based on historic references that we completed with a
systematic review of the recent literature. For the systematic review, following the
PRISMA 2020 guidelines [16], a search of the Google Scholar and Scopus databases was
conducted using the following search terms: "sketch* AND design AND (recognition OR
interpreta*)"; and "sketch®* AND generate AND architect*". From the 17,600 results of
papers since 2020, two researchers independently analyzed if the returned papers were
meeting the criteria of discussing an Al tool (by opposition to, for example, CAD tools),
taking sketches as input, to aid design activity (by opposition to some paper focused on
the design of the tool but not serving design activities) in engineering, architecture or
product design domains (i.e. from domains most relevant to our context or research).
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After reviewing the title, abstract, and keywords, most of the initial 300 results were
discarded. The remaining 39 papers were read in their entirety. Finally, 8 studies showed
to be eligible, as they were studying Al tools recognizing design sketches from
engineering, architecture or product design domains (Fig. 3).
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Fig. 3: Diagram of the paper selection process.

Based on this review of the recent literature and on the historical state-of-the-art,
the following subsections investigate each of the proposed tools’ three features - sketch
as an input (first section), recognition of more specifically architectural sketches (second
section), and inspirational images as an output (third section) - before concluding with a
synthesis of the overarching challenges and research gaps identified across these areas
(fourth section).

3.1. Sketch-based tools in design domains

Sketch-based tools have been studied for a long time in academic design research
and have evolved to understand more and more hand drawings for a wide range of
applications. A first foundational contribution was Sutherland’s Sketchpad [17], a
groundbreaking system that introduced the concept of interacting with a computer
through graphical input like line drawing. In the late 1990s, mechanical engineering
researchers developed design aids based on sketches, such as Sketchlt [18], ASSIST [19],
and UDSI [20]. These technologies were capable of interpreting line pixels to generate
geometric shapes and abstract drawings by combining direction and speed information
[18, 19]. They could also recognize text, geometric shapes, arrows, and expected symbols
[18-20]. Thus, they were able to comprehend a drawing, and descriptions of the desired
behavior, in the case of ASSIST or Sketchlt, to generate the corresponding component. In
mechanical engineering, it was even possible to suggest variations of these components
[18].
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Over the years, different types of input have been developed, such as 2D drawings
in plane, 2D drawings in multiple specified planes forming a 3D space, immersion
drawings in a 3D model, or perspective drawings [21]. However, the initial Sketchlt,
ASSIST or UDSI tools were only capable of recognizing simple, clean-lined drawings
composed of basic geometric shapes and pre-encoded symbols [18-20].

More recently, Seff et al. [22] have perfected the recognition of hand drawn
engineering components (Fig. 4d) using developed image-conditional primitive models
and constraint models, able to recognize the parametric primitives (points, lines, circular
arcs, etc.) typically composing the engineering sketches [23], to generate the
parametrized CAD model of the component. Wang et al. [24] and Zhang, Guo and Gu
[25] have achieved the 3D shape reconstruction of a designed product respectively solely
based on a single-view or based on a single sketch but accompanied by the viewpoint
specification.

To support visual and multi-modal design-by-analogy in the engineering design
process, Jiang et al. encourage the development of novel tools to process non-textual
inputs such as sketches, images, or 3D models [6]. Zhang and Jin propose a framework
for the search and retrieval of visual stimuli to enable the discovery of visual analogies
from large datasets of design materials (e.g., sketches, CAD drawings, photographs, etc.)
based on designers’ initial sketches [26]. They demonstrate how visually related sketches
to a designer’s sketch-based input can be discovered to support visual analogy [27]. Kim
et al. also develop a co-creative sketching Al partner to provide inspirational sketches
based on visual and conceptual similarity to a designer’s sketch [28]. Arora et al. [29]
developed a sketch-based tool that generates new sets of inspirational sketches based on
input images of rough sketches from the designer. Some tools can additionally recognize
motion significance arrows and propose 3D-model solutions that meet sketched
mechanical constraints [30]. Image-based search has also been explored by Jiang et al. to
retrieve visually relevant patent images [31] and by Kwon et al. to discover alternative
uses for products [32]. Beyond tools that support image and sketch inputs, Kwon et al.
built a multi-modal platform to retrieve 3D-model parts based on similarities in visual
and functional features to 3D-modeled inputs specified by the designer [33].

While the surveyed list is not exhaustive, the analysis of current state-of-the-art
points to limitations in managing the complexity, amount of information, and vagueness
of design sketches. For example, sketches used as input in these tools are clean and
unambiguous (e.g., see Fig. 4), and not representative of naturalistic design sketches. The
difficulty in achieving robust recognition of the typically drawn ideation sketches is due
to two reasons according to Zhang et al. [34]: firstly, naturalistic sketches contain rich
color and texture information; secondly, drawing styles vary from person to person.

In the field of architectural design, some researchers have attempted to address
the task of recognizing architectural sketches, like Valveny and Marti [35], Lee et al. [36],
Sketch It Make It [37], SolidSketch [38], EsQUISE [39], and NEMo [40]. They differ
slightly from other design tools mentioned above: in addition to the sketch recognition
strategies used in engineering design, these tools include disambiguation steps and are
trained to recognize typical architectural drawing codes (Fig. 5), as well as written
characters to understand room labels and common annotations. But these prototypes
demonstrate that architectural sketch recognition is currently achieved by limiting the
drawing process to conform to drawing codes that can be understood by the software.
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The most advanced sketch recognition prototype to date, to our knowledge, is NEMo,
which was developed in the 2010s. Subsequent research on architectural sketch
recognition, such as SketchPointNet by Wang [41] or SketchGAN by Liu [42], focused
on the performance of neural or deep learning systems and was only applied to tasks that
involve interpreting representation of everyday objects based on pre-coded CAD plans or
3D models rather than freehand sketches.
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Fig. 4: Type of sketches managed by recent tools [respectively 27, 29, 30, 22].
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Fig. 5: lllustration of EsQUISE [39].
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3.2. Generative Al tools for image generation

When searching for sketch recognition tools that generate images, some tools are
designed to aid in the ideation process by providing either inspirational or rendered
images. It is important to note that this area of research is undergoing rapid development,
and the references displayed below represent a sampling of innovative work, rather than
an exhaustive literature review. Instrumented co-creation was already being studied
around or even before 2015, prior to the recent surge in Al image generators. For
example, the Electronic Cocktail Napkin [43] retrieves and displays architectural
components related to the designer's sketch. Drawing Apprentice [44] is a sketching
support tool that responds to the designer's sketch by sending a similar sketch, thus
maintaining engagement in design. Sentient SketchBook [45] and 3Buddy [46] are two
design tools aiming to improve the designer's exploration of the solution-space through
ideation human-machine conversations. They provide more goal-oriented accurate
outputs. Two recent sketch-based tools for co-creation by image generation are of
interest:

Sketch2Pix (Fig. 6) is an interactive application that supports architectural
sketching augmented by an automated image-to-image translation process [47].
Designers can sketch using augmented brushes that translate strokes into
pre-programmed images. For instance, they can quickly create a perspective sketch by
using pre-trained brushes like 'fence' or 'hedge' to draw rendered fences or hedges. The
Creative Sketching Partner (Fig. 7 [48]) and the similar Collaborative Ideation Partner
[24] are interactive systems that recognize a current design sketch and propose a response
sketch (CSP) or an image (CIP) from another category or domain that shares some
structural or semantic aspects. The response sketch is modulated by specified level of
visual/conceptual similarity.
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Fig. 7: Examples of participants’ new sketch based on inspiring sketch [48, p. 225].
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3.3. Research gap

This background synthesis highlights a gap in current tools: there is a lack of
sketch-based generative systems capable of interpreting the complex, informal, and often
non-pre-coded representations typical of early-stage design drawings (e.g., Fig. 8), while
also providing designers with relevant, inspirational visual stimuli. Most existing Al tools
rely on text-based inputs, and while recent advances in Al have expanded image
processing capabilities, these systems are not yet equipped to handle the dynamic,
line-by-line nature of design sketches [49]. Current generative tools often perform well
with structured or pre-coded inputs but fall short when applied to the fluid and
characteristic nature of sketching in design practice. Indeed, design sketches encompass
layers of graphical traces that are more personal habits of representation than
standardized symbols. As an example, a thickness of line will convey a materiality
information but unless the system is calibrated on the individual designer’s personal
drawing habits, how to define what is thick and what is thin? This reveals a broader
research challenge: understanding what makes the recognition of design sketches
uniquely difficult, and what interpretive capabilities are needed to bridge that gap.

I\\Ss'" 7 I’"

* R

TINEIN RNWN

FIT-Va NN aa N

x 0150

Fig. 8: Examples of typical architectural ideation sketches (extracted from our study).
4. MATERIALS AND METHODS

This section describes the experiment conducted to simulate the task of sketch
recognition with human agents using an architectural design case study. It begins by
explaining the global experiment and the task, as well as the implementation of the
physical space, data collection, and coding.
4.1. General experiment procedure

To better understand the challenges of this proposal and to develop an

ecologically valid aid, we seek to recreate a realistic design task context. By ecologically
valid, we refer to the extent to which the experimental setup reproduces the conditions,
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constraints, and workflows of real-world architectural design practice. Instead of
providing pre-selected sketches to human agents for recognition, we simulate a design
situation in which professional architects create a single-family house project based on a
given design brief, so that human agents are faced with naturalistic design sketches to
perform the sketch recognition task. Designers sketch on a tablet using a drawing
software specifically developed by some researchers [50] to closely replicate analog
drawing tools (e.g., paper, fine liners, markers), and offering a curated set of colors’
designed to reduce cognitive load while supporting the expressive needs of architectural
design. Unlike paper sketches, which would require scanning or photographing—thus
interrupting the workflow or reducing image quality—the digital drawing tool ensures
high-quality, real-time access to the evolving sketches for the human agents while
supporting fluid interaction for the designers. Over a 1h30 session, designers interact with
the “intelligent tool”, which manages these dynamic, evolving sketches and provides live
inspirational images and project’s representations based on their input. These live visuals
are shown to the designer on displays.

As we were studying how human agents recognize complex naturalistic sketches,
underperforming the role of the “sketch-based tool”, we implemented a Wizard of Oz
technique. Indeed, the Wizard of Oz technique consists of simulating the functionalities
of an innovative technology by replacing them with equivalent human work, hidden and
in real time. In this way, the tool user believes that he/she is using the so-called
technology without the need for it to be developed. This makes it possible to assess in
advance its impact on users and their interaction with the machine [51] and thus help to
figure out the development needs. Prior publications from our team have investigated the
designer’s activity [12, 52] and usage of this tool. We have observed a creative exchange
between the designer and the tool, which was used as an informative, evaluative, and
creative resource. This was achieved through design by analogy and project
rediscoveries. Our focus in this paper is thus now the sketch recognition part of the
“intelligent tool”, through the human agent's sketch recognition activity. Figure 9 shows
our Wizard of Oz set up.
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Fig. 9: Experiment principle - a design session instrumented through a Wizard of Oz
protocol.
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2 The software gives the users access to black, blue, green, yellow, orange, red and purple in two thickness
(see Fig. 8).
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The content generated by the human agents is transmitted to the designer with the
objective of capitalizing on the potential of analogical reasoning and stimulating ideation
with inspirational stimuli and project rediscovery. Figure 10 illustrates the “tool”'s ability
to transform sketches into content that can then be employed in design activities.

Content produced: ~ images ~3D ~2D

Sketch used to produce content Sketch evolution Idea implementation
while content is produced based on shown content

Fig. 10: Example of input from the designer, corresponding output of the agents and
design iteration based on these outputs.

4.2. Simulated software’s task

In accordance with the Wizard of Oz principle, human agents are placed in the
same conditions as the tool. They receive the real-time evolving sketch from the designer
in the adjacent room and are informed of the design brief, including the site and program.
Each human agent has a specific sub-role. This team includes an "image agent" who
searches for inspiring images online, a "2D agent" who creates a normalized clean plan of
the building to be designed, a "3D agent" who creates a basic 3D model of the building,
and a "coordinator" who manages the team and triggers the sending of the agents'
creations back to the designer every 5 minutes. During this five-minute interval, the
designer continues to engage in sketching and design activities. This choice of interval
length was made to be as closely following the design flow as possible, while giving the
human agent a needed minimum of time to successfully materialize the design
modifications in their productions. A side analysis [53] demonstrated that the human
agent successfully achieved this target rate of visual stimuli updating and that the
designers considered the system’s reaction time to be satisfactory and non disrupting for
their activity. Indeed, the length of the task is pretty long, shortening the perception of
that interval of time, and the way of using the tool (for inspiration and design
conversation with external representations) is less likely to be impacted by that span. For
the roles of the three agents (i.e. the three tool's functions implemented), three axes for
stimulating ideation are chosen here, identified as key design aids in our prior work [11,
13, 52]: (i) fostering analogical reasoning, by providing inspirational images, to stimulate
creativity and the generation of solutions; (ii) presenting different points of view and
representations of the designed artifact to encourage rediscovery from another angle and
thereby error detection, solution evaluation and the generation of more satisfactory
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solutions, (ii1) fostering the interactive dimension of design in its perceptual iterations. To
implement these functions, we selected the three tool’s features of providing
focus-appropriate inspirational images, cleaned-up 2D plans of the project and a rough
3D model of the project.

The human agents work in parallel to their respective production tasks (image,
2D, and 3D). To place them in the same conditions as the future technology they are
simulating, the modelers have been given specific instructions to follow:

- forbidding them to design an architectural proposal, their role being limited to
translating the received representations;

- providing them with a 2D and 3D library of standard furnishings to use by-default;

- specifying the by-default measurements to be assumed, unless otherwise stipulated by
the designer, for wall thicknesses, ceiling heights, roof slopes, etc.

- providing them with the site’s layout plan and the 3D model;

- informing them of the content of the architectural design brief;

- asking them to be coherent across the 2D cleaned-ups and 3D model.

4.3. Design task

The design brief on which these respective instrumented design tasks and sketch
recognition tasks were performed was chosen to be the architectural design of a
single-family housing for a young couple with two children, on sloping terrain in an
urban setting in between two conjoined other houses. The expected rooms included : an
entrance hall with vestiaire; two toilets; a fully-equipped kitchen; a living and dining
room for 6 people; an office room; a master bedroom; two children's bedrooms and a
space for children to play; a guest bedroom; a family bathroom; a garage for a small
motorbike and bicycle; and a deck, garden and garden shed.

Instead of using a simple task that would necessitate minimal specific background
knowledge and speak to a majority of non-domain-qualified participants, our study was
grounded in a realistic architectural design brief, selected to elicit the kinds of complex
and expressive sketches that future sketch-based tools would need to interpret. Moreover,
by choosing this particular scope and nature of architectural brief, we ensure that the
design is sufficiently challenging to maintain the engagement of the designers, and
providing a valid justification for the use of stimuli instrumentation, whilst still
guaranteeing a satisfactory level of design achievement by the conclusion of the
90-minute design session (Fig. 11). This scope of architectural brief also remains within a
manageable scope for the human agents’ task of stimuli production.

13
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Fig. 11: Overview of the 17 final design propositions.
4.4. Participants and data collection

Empirical data for the sketch recognition task analysis resulted from 8 different
individuals executing functionality of the ‘tool’ as human agents during 17 design
sessions (Table 1). The 8 human agents were all graduate students in a 5-years major
fusioning architecture and civil engineering in one program, meaning they were
proficient in reading architectural floor plans, CAD drawings, and 3D modeling. They
were selected based on their performance in a preliminary assessment, and those who
passed the performance test subsequently received 1.5 hours of training (to ensure
productivity but also consistency independently of their personal styles). Each human
agent was assigned the sub-function (either reference image, 2D CAD plans, or 3D
model) in which they demonstrated the greatest efficiency and they assumed that same
sub-function for each design session (Table 1). On the other end, the 17 designers varied
in gender, professional experience, and architectural sensibility (Table 1). The
professional designers were either architects (from architecture schools) or
engineer-architects (having previously majored in the same program combining civil
engineering and architecture described above). All the designers have a similar expertise
level in designing a building proposal that address this experiment’s brief and have had
similar training in conceptual design, architectural sensibility and residential housing
design.

14
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Table 1: Experiment population.

Agents Gender Age - years  Background Experience Role

1 Male 26 Eng. Architect Student Images

2 Male 23 Eng. Architect Student 2D CAD

3 Female 23 Eng. Architect Student 3D model

4 Female 22 Eng. Architect Student Coordinator
5 Male 22 Eng. Architect Student Coordinator
6 Female 21 Eng. Architect Student Images

7 Female 22 Eng. Architect Student 3D model

8 Female 21 Eng. Architect Student 2D CAD
Designers Gender Age -years  Background Activity Experience
1 Male 52 Eng. Architect Agency Senior

2 Female 24 Eng. Architect Agency/Research Junior

3 Male 25 Eng. Architect Agency Junior

4 Female 34 Architect Agency/Research Intermediate
5 Female 30 Eng. Architect Agency Intermediate
6 Male 30 Eng. Architect Agency Intermediate
7 Male 48 Eng. Architect Agency Senior

8 Male 30 Architect Research Junior

9 Male 28 Eng. Architect Agency Junior

10 Female 31 Eng. Architect Agency Intermediate
1" Female 24 Eng. Architect Agency Junior

12 Female 40 Eng. Architect Agency Senior

13 Male 33 Eng. Architect Agency/Research Intermediate
14 Male 45 Eng. Architect Agency Senior

15 Female 25 Eng. Architect Agency/Research Junior

16 Female 27 Eng. Architect Agency Intermediate
17 Female 27 Eng. Architect Agency Intermediate
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The 8 agents are observed interpreting sketches during these 17
one-and-a-half-hour design sessions, resulting in 54 hours of sketch recognition. The
actions of these human agents were recorded through room and screen recordings,
allowing for observation of their activities using the AEIOU format to structure field
observations [E-LAB, in 54]. We then conduct self-confrontation semi-structured
interviews with the agents. Based on these recordings, we identify questionable and
illustrative moments, i.e. every disruptive moment or ones diverging from usual design
activities theories. We then discuss these moments with each human agent, showing them
the pre-selected video samples and asking them to explain the rationale behind their
actions. The starting questions are “How were you able to recognize this part of the
sketch? What was your strategy and the elements you used?”’. We then elaborate on their
answers with new questions, individually adapted to the discussion. This approach allows
us to access an extensive collection of overall representative behaviors, as well as
singular unexpected behaviors and their declared workflow.

4.5. Data coding

The interviews are transcribed and coded according to the principles of the
Grounded Theory Method, following a method of coding elaborated by Lejeune [55],
which consists of conceptualizing each declared action as a “tag”, visually represented by
a verb in a box. Each action noted in the AEIOU method has been treated with the same
coding method. We kept adding each action ever declared by at least one agent in the
interviews or observed by the research through AEIOU. When saturation is achieved,
meaning that all declared or observed actions are represented by a tag, we qualify the
articulation between them. These relations can be conjoint (indicated by a green arrow),
inverse (red arrow), or dependent on conditions (dotted link showing the condition). This
approach of coding, by applying labels to describe what is happening, relies on an
abductive interplay between data and researcher. When conducted rigorously and to
saturation, it is recognized by many researchers as a robust, empirically grounded
method. It is particularly powerful for studying phenomena that remain under-explored,
as it supports the emergence of greater conceptualizations from the data [56].

5. RESULTS

This study aims to understand the challenges of sketch recognition in design
contexts by characterizing the human workflow in performing this task. Using an
architectural design task as a case study, we examine the resources utilized to understand
the architectural object being designed, as well as the procedure constructing a mental
model from received graphic features. Based on the data collected documenting the
sketch recognition task, and following Lejeune’s GTM method [55], we construct the
diagram shown in figure 12. The diagram offers a comprehensive overview of the actions
and sub-actions carried out by the human agent to accomplish the sketch recognition task.
The diagram demonstrates how each action either enables or prevents subsequent actions,
as well as the conditions associated with them. To structure the analysis, we identified
clusters of actions that shared a common purpose or strategy. This clustering process
continued iteratively until the entirety of the diagram was accounted for, ensuring that all
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actions and links were covered. These clusters informed the development of the strategies
and knowledge bases presented in the following subsections 5.1 and 5.2. Finally, in
section 5.3, the holistic diagram of the overall process will be presented in detail, in a

sequential manner.
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Fig. 12: Grounded Theory Method diagram describing human agents’ actions.
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5.1. The need for a functional model

As a first result, the GTM diagram shows that human agents seek to identify the
function of the elements sketched, beyond just shapes and symbols (Fig. 13). It appears
that in addition to information on shapes, zones and symbols, agents need information on
function-spaces, furniture and functional characteristics. This means that building a
geometric and topological mental model (shapes and relations representing an item) is not
enough to collect all the data that will be needed to understand the sketch and produce the
required images. Rather, human agents will push their understanding of the sketch to the
construction of a functional mental model of the designed object (functions and
characteristics of the item represented), in order to be able to carry out their production
tasks.

Locating
identical

staircase
shapes

Deducing a level
change

Identifying th
Specify staircase e"f'gg]rg ©

arrow direction

Absence of
stairs

. changing the

*. initial logical
o level

Identifying the
function of a room

Presencé:“n.\_ :
of characteristic Seeking the
furniture function of a
room

Aenables B

R X ) X B prevents A
Caption: Human agents’ actions Designers’ actions A < — B

Fig. 13: Seeking for functional information (extract of Fig. 12 for functional cluster).
5.2. A three step sketch recognition process

In order to progress from the initial sketches to the construction of the functional
mental model of the designed object, agents employ three distinct strategies : line
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synthesis, line recognition, and line interpretation. These three strategies appear to be
applied in the sequence indicated. The following sections provide a detailed account of
each of these strategies.

5.2.1. Line synthesis

Architects often multiply the lines symbolizing the same element to reinforce its
mass or confirm its location. They also sketch both the alternatives and the final proposal
often on the same drawing, superimposing the different solutions and then anchoring
their final choice by passing over its lines several times. It is thus necessary to
differentiate between strokes representing architectural elements, graphic construction
strokes, annotation strokes, texture strokes and stylistic strokes. When seeing the sketch,
the first action of the agents is to synthesize the lines, as declared in this illustrative
example, an agent said that “He [the designer] draws a lot of short parallel lines close
together, so we understand that it's a texture of material. A lathing of something. It's very
different from the long, rather straight strokes he makes afterwards for walls (...) And
then he'll go over the same wall lines several times, so we know there's no new
information”. Agents sort perceived lines into three families: lines that mean nothing,
lines that embellish and lines that convey information. Only the latter are retained and
anchored in the agent's visual memory at the end of this synthesis action.

5.2.2. Line recognition

From the lines selected during the synthesis stage, the agents now perceive
various closed or open shapes defining spaces with certain adjacent or inclusive
relationships between them, as well as symbols. An agent said about a drawing: “it's the
rectangular geometric shape formed by four long, more or less straight lines that makes
it a room. (...) And here we have a series of parallel or perpendicular lines that form a
solid U inside the earlier rectangle. Next, we'll be able to tell that this is kitchen
furniture”. The agents thus recognize these lines as shapes located in relation to each
other, which means that they construct a topological geometrical mental model of the
drawn object.

As shown in the GTM diagram (Fig 14), the agents use the memorization of
previously seen lines which are no longer necessarily visible, either because they have
been erased or because they are in another part of the drawing sheet, to combine with the
lines still visible. This is essential here to build a mental model of the whole object and
not just the part visible at the moment. This also helps build-up a global understanding of
the drawing, rather than a collection of snapshots of unrelated parts of the object. This
memory effect is particularly essential for architectural sketches that develop over
several building levels or drawings in plans, sections and elevations.
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Fig. 14: Using memory to gather information (extract of Fig. 12 for memory cluster).

5.2.3. Line interpretation

The last strategy carried out by human agents to move from the topological
geometric mental model they have so far constructed to the functional mental model they
need is the most complex, and the one that brings out a number of very interesting
knowledge bases. The GTM diagram reveal that to interpret the visible geometry and
deduce the functions and characteristics of the shapes, agents call on 4 key resources: (1)
knowledge of the context, (2) knowledge of the designer, (3) knowledge of the design
domain, and (4) knowledge of the designer's intentions (Fig. 15).
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Fig. 15: Knowledge bases for interpreting lines (extracts of Fig. 12 for 1- context, 2-
domain, and 3- designer knowledge bases clusters).

Contextual knowledge refers to known information about the requested
requirements, the intended use, and the phase of the design process in which the session
takes place. It enables the agents to deduce a number of characteristics expected in the
designed project. For example in architecture, on a steeply sloping site, you can expect at
least two levels (one at garden level, the other at street level). Based on the width of the
lot, they can guess whether it's a semi-detached, 3-facade or 4-facade housing project.
Knowing that a playroom and an office are required means that these functions can be
found in the spaces drawn, even if the layout of the rooms is not shown.

The knowledge of the designer refers to a learning mechanism of the agents.
They start to learn the personal codes of representation used by the designer to better
understand the sketches. One subject, for example, began to use colors to identify the
different types of rooms—bedrooms, bathrooms, corridors, etc.—which the agents then

21



J. Mech. Des.

understood (Fig. 16a) and used as information to better understand the project’s
evolution.

a. AP : b.
FIGURE 16: a. Example of construction of the knowledge of the designer b. Color
coding in component sketching.

This learning process is as much about absorbing personal drawing codes (colors,
symbols, abbreviations, etc.) as it is about design methods (designing plan by plan,
progressing in detail, going back and forth between plans and sections, testing different
versions with little detail, etc.). The agents also mention a recurrence across all the
designers in the color codes used. In our case, walls are represented in blue or black,
while the detailed layout is represented in orange, blue or black, and the annotations are
made in the other yet unused colors or in black. In addition, blue commonly symbolizes
glazing or water; green, vegetation; yellow, light; and orange, wood (Fig. 15-3 et 16b).
Black remains the default color.

The use of color codes should be tempered. Although the meaning of a color is
consistent and not changed by the designer during its design process, all elements of the
same essence are not systematically colored. For example, an element is colored blue in
the facade to emphasize its glazed nature as opposed to the solid door, but this does not
mean that everything that is not blue is not glazing (Fig. 16b). So color is information,
but the absence of color is not.

The knowledge of the design domain refers both to knowledge of drawing codes
and to the principles of good composition. Drawing codes are, of course, the least
ambiguous way of identifying drawn components. For example, in architecture, a thicker
wall is a cut or load-bearing wall, as opposed to a low wall or partition, which is drawn
thinner [57, 58]. Doors, staircases, dining tables, beds, sinks, bathtubs and toilets all have
their own symbols (Fig. 17). By extrapolating these codes, a room will be a bedroom if it
has a bed, a kitchen or dining room if it has a table. Finally, components are also
sometimes listed or labeled in the sketch.

But beyond drawing codes, knowledge of the design domain composition
principles and what can be expected, here in architecture for example in terms of spatial
planning, can be used to deduce the meaning of uncoded lines. A shape can be
understood because it is associated with another, reducing its potential for meaning to a
single solution. Let's take a circle as an example (Fig. 18): this basic shape can, a priori,
symbolize many things in a house, such as an area, a rug, cooking stoves, a table, a chair,
etc. If this circle is intersected by other strokes and is wide, it's more likely to be an
annotation delimiting an area. If it is in the middle of a room, it represents a rug. If this
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circle, in the middle of a room, is surrounded by smaller identical circles, squares or
lines, it symbolizes a table. If, on the other hand, it is grouped with one or three other
circles, all inscribed in a rectangle or square, it represents a stove. The scale of the lines
also plays a role in interpreting the sketches. Take the same rectangle, thin and long, with
its two diagonals marked: this is the architectural code for a tall cabinet. However, if this
rectangle takes up a third of a room's surface area, it becomes the cross symbolizing the
emptiness of a mezzanine (Fig. 18). And this can only be deduced if the agent
understands architectural design principles.
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Fig. 17: Example of common furniture symbols and codes.
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Fig. 18: Illustration of the various meanings of a shape depending on its graphical
context.

Finally, their knowledge of the designer's intentions is built up as the design
session progresses and as the functional mental model of the designed object is
constructed. The agents perceive the concepts and principles structuring the proposal that
the designer sketches out as they go along, which helps agents deduce where the designer
is going. This progressive iterative understanding of the designer's design intentions is
also possible thanks to the agents' domain knowledge.

5.3. Holistic human agent’s workflow
With a better understanding of the recognition actions, strategies, and resources

used, we can summarize the human agents' complex sketch recognition activity using the
following holistic model (Fig. 19).
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Fig. 19: Holistic model of the sketch recognition process.

This process begins with the capture of the sketch (far left) and progresses
through three recognition steps (line synthesis, recognition, and interpretation) before
ending with the start of the task of producing the deliverables that the "software" sends
back to the designer (far right). This workflow starts with the initial lines being used to
create a mental model of the sketch by performing visual filtering to remove unnecessary
lines and retaining only the synthetic lines. The features - together with the memory of
other previous lines - are recognized as elements (shapes, zones, component symbols,
etc.). This model is then used to complete the synthetic features received with the
previous features. By combining their knowledge of the design context (brief,
requirements), the subject's personal drawing codes (gradually built up), their domain
knowledge (sequences of design steps, expectation of specific functions or forms, etc.),
and the designer's intentions (also gradually discovered), they are able to interpret the
geometric and topological mental model. This interpretation results in a functional model
of the designed object, which identifies the various elements, their boundaries and
connections, and the aesthetic/functional characteristics of these elements. The functional
model provides feedback on the designer's intentions and personal drawing codes to the
agents. The agents then produce the various requested deliverables like inspirational
images and other external representations to stimulate the designer's creativity in line
with their intentions and the project's direction.

In addition to the discovered resources and strategies, we observed two interesting
phenomena : the usefulness of the dynamic evolution of the sketch and the need to make
design choices. Indeed, beyond all the possible deduction of the meaning of lines, the key
to understanding complex sketches lies in their dynamic evolution. Understanding a
sketch taken from its context and frozen at a given moment in time can be extremely
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complicated. The temporality of the appearance of lines, and the knowledge of the project
built up as it is represented, is a crucial key to understanding the complex sketches.
Furthermore, for some of the sketches they received, the agents had to make design
choices, despite their instructions to stick to representation, in order to accomplish their
task. For example, when designers don't draw design components to a realistic scale,
agents have had to decide between respecting the proportions of the drawing and
therefore representing components that are larger, or smaller, than it should be, or
drawing the element with the correct dimensions and therefore not resulting in a proper
design. The boundary is a tricky one to define, as designers are just as likely to design
custom-made elements with specific intentional characteristics, as they are to employ
standardized common elements. How, then, to distinguish between an intentional
uncommon specification and a representational error? Faced with this difficulty of
positioning, the agents were asked to represent the object as drawn, even if it was
seeming wrong in the design, waiting to be corrected if necessary. Some designers thus
became aware of their errors thanks to the "software".

Producing and documenting a model such as shown in Figure 19 provides insight
into the strategies and knowledge mobilized by agents to comprehend these intricate and
complex sketches, beyond the context of the present study. These strategies are
transferable between design domains, whether from architecture or another field, as they
concern the processing of features received and the calling up of knowledge bases.
Furthermore, understanding how humans perform this recognition task allows us to
document different strategies, moving beyond the constraints of current operating logics
known to software, and informing new ways of thinking.

6. DISCUSSION
6.1. Study limitations and strengths

This study adopts a qualitative case study approach grounded in the principles of
the Grounded Theory Method (GTM), and it is important to acknowledge both its
methodological limitations and strengths. Rather than aiming for statistical
generalization, this study seeks to generate conceptual insights into sketch recognition as
a situated and interpretive process. Through a rigorous coding process carried out to
saturation, an established benchmark in qualitative research, we identify stable and
internally consistent patterns that reveal how agents construct a mental model of the
design artifact. As such, the gained insights do not aim to predict or quantify sketch
recognition behaviors but serves as a foundation to inform both future empirical
investigations and the development of Al tools for complex design tasks

Furthermore, the Wizard of Oz setup allowed us to simulate a future Al tool with
high fidelity, enabling the extraction of key sketch recognition strategies that would
otherwise be speculative. But this protocol relies on human agents whose interpretation
and responsiveness may differ subtly from a real Al system, particularly in terms of
consistency, speed, and error tolerance. As highlighted in the related work section, a
Wizard of Oz setup was necessary as an Al implementation would require more
standardized inputs or predefined symbol sets, likely constraining the sketching behavior
of the designers and altering the natural flow of the session. Plus, the visual content
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produced would be less fluid and less accurate, limiting the emergence of the kind of rich,
interactive ideation observed in this study. But in our case, those human agent’s
interpretive skills were the phenomena we seek to gain insights in, as it currently exceeds
the capabilities of Al. Observing expert designers and agents in a live task ensures that
the insights are both ecologically valid and contextually relevant. The richness of the
empirical material and the detailed articulation of actions, conditions, and
interdependencies offer a satisfactory level of insight into how a functional understanding
of sketches is formed.

As the validity of the gained insights depends on the performance of the human
agents, we assessed this performance in a side study [53]. It demonstrated that human
agents successfully adhered to the required rate of stimuli production while maintaining
highly project appropriate content. They showed a strong understanding of the designers’
intentions and behaviors. Evaluating the perceived usefulness and perturbation of the
received stimuli revealed that all types of visuals were considered non-disruptive.
Designers’ assessments of usefulness were more in link with the context and timing of
the stimuli rather than the quality of the human agents’ production. Although some
designers noted occasional delays, slight mismatches in the desired level of detail of the
representation, or misunderstandings, they overwhelmingly viewed the tool positively,
emphasizing the relevance of the timing and of the content of the visuals. One limitation
to note is that agents did not retain access to earlier sketch iterations, relying instead on
memory. This was an intentional protocol choice to mirror what was visible to the
designer in real time, ensuring alignment with the evolving focus of the design. While
this choice to mirror what was visible to the designer in real time ensured alignment with
the evolving focus of the design, it diverges from how an Al system would typically
operate. This limitation should be taken into account when extrapolating findings to the
design of memory-enabled Al tools.

Finally, although this study was conducted within an architectural design task, the
interpretive challenges and agent-based learning mechanisms it identifies are not
exclusive to that domain. Many early-stage engineering design problems similarly
involve spatial ambiguity, abstract function-form sketching, exploratory reasoning,
evolving intent and open-ended problem framing. The strategies and mechanisms
constructed to interpret the sketches are transferable and relevant to other domains. In
particular, the articulation of recognition actions observed here contributes a conceptual
model of sketch recognition that is analytically transferable to mechanical engineering
design, where similar challenges in interpreting freehand representations and
understanding design intent are present. By studying how human agents interpret
meaning in freehand sketches, we provide empirical grounding for sketch-based Al tools
that are adaptable across complex design domains.

6.2. Insights for future sketch-based tool

While some of the boxes shown in the holistic model in Figure 19 can be easily
replaced by currently existing techniques, others present real challenges. The first main
challenge lies in the initial step of synthesizing the received lines. As we have seen,
sketches can consist of numerous lines, some of which may carry implicit or explicit
information, while others may be texture or unnecessary lines that obscure the drawing's
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legibility. Additionally, integrating information from multiple parallel sketches (such as
plans, cross-sections, and detailed sub-sketches) is also a challenge. After that,
transitioning from synthetic lines to a topological geometric model is a technique that has
already been mastered in many design domains [27-29], including architecture [37, 38].

Interpreting drawings by recognizing drawing codes and symbols is also a
well-established practice [39, 50]. But the limits are reached when users add personal
codes or do not use the pre-recorded codes. Given the various knowledge strategies
highlighted by our study, both considering well-established architectural conventional
symbols but also contextual inference and incremental interpretation, we would
recommend a balance between the adaptability of the sketch recognition system and the
efficiency of the standardization of user inputs. But keeping in mind that, while using
design domain drawing code databases and pre-encoded context information for software
agent development is easily done, the challenge is to utilize the designer's habits and
intentions, and to predict the probability of certain design elements based on the project
context or rules of good composition. Populating the databases for user knowledge,
architectural knowledge, and design intentions in this holistic model will be a substantial
task. But developing tools that can interpret naturalistic sketches, over tools that
encourage or rely on standardized visual inputs to function, even if having designers
adapt their sketching behavior to align with conventions might reduce the complexity
required for sketch recognition, will preserve the creative freedom needed in the early
design phases where loose sketches are tools for thought.

Finally, despite being already possible to create a model for functional
understanding of a drawing from simple sketches in design domains with explicit and
objectifiable codification [44, 48], it remains very challenging for architectural sketches,
which are inherently complex, incomplete, and contain implicit information.

Based on the priorly presented results, we provide insights for overcoming these
challenges and developing powerful sketch-based generative Al tools for complex design
situations where current tools are insufficient.

Firstly, the sketch recognition module should be integrated into the drawing
medium instead of relying on frozen images or sketch extracts like in most of the tools
we came across in our literature review [6, 22, 24-26, 28-29, 32-33]. This allows access
to sketches under construction, providing more information such as the temporality of
line appearance and process perception beyond what is currently visible. The tool should
also have the ability to memorize and store features that have been seen, in addition to
those currently visible at the time of the recognition request, a precious resource to our
knowledge not yet exploited in current tools [22-33]. As we saw in section 5.2, this helps
the line recognition and the building of a global understanding of the drawing, rather than
a collection of snapshots of unrelated parts of the object. This is particularly important for
sketches that develop over several drawings in plans, sections, and elevations.

Secondly, the tool should combine both symbolic and connectionist logic.
Symbolic logic uses predefined rules and explicit instructions to narrow down the field of
possible interpretation [59]. On the other hand, connectionist logic relies on statistical
recognition probabilities and the knowledge provided to solve the problem [59]. The
resources used by human agents to understand the received drawing belong to both
logics. Indeed, the recognition strategy involves deducing the meaning of features based
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on shape associations, feature scale, color codes, architectural codes and the probability
of expecting a particular compositional element (according to rules of good architectural
composition principles), thus following symbolic logic. Another part of the recognition
strategy involves learning the designer's habits and intentions to start recognizing his/her
own drawing codes and the probability of expecting a particular element according to
his/her recurrent design method and even architectural style, thus following connectionist
logic. A combined approach could, for example, use symbolic rules to constrain
interpretations—such as requiring an opening to connect two enclosed spaces—while a
trained model learns that a specific designer typically tend to put double doors if the
space is available and draw doors as open arcs without adjoining lines, or represents
circulation with dashed arrows, even if these deviate from standard drafting conventions.

In order to be able to generate appropriate inspirational images for the object
being designed, the tool, in recognizing the sketch, must go as far as a fine level of
identification of the functions and of the detailed characteristics of the various elements
drawn. This has been shown by the need to build a functional mental model to
complement the topological geometric model.

Finally, we also drew insights from the feedback provided by designers during the
semi-structured interviews, which further informed potential enhancements for future
versions of the tool. They highlighted the tool’s non-locking functionality, which allowed
for flexibility in design exploration, and noted the time-saving capabilities that resulted
from the tool’s ability to present relevant stimuli in real-time. Designers also identified
potential avenues for enhancement, suggesting that the stimuli be better aligned with the
level of detail in the design at the time of receipt. Furthermore, they recommended that
specifically commanded images be transmitted with greater expediency to better match
the designers' fast-paced ideation process. Additionally, several designers expressed a
desire for the visual feedback or stimuli produced by the tool to be directly viewable on
their own drawing tablets, rather than on a separate screen, to support a more fluid and
integrated workflow.

6.3. Implications for early stage design

As discussed in the introduction, we selected an architectural design task for our
case study to ensure that the sketches produced would be sufficiently rich, layered, and
open-ended to reflect the kinds of interpretive challenges that sketch-based tools must
ultimately handle. While these sketches often follow conventional drawing structures,
they also include many informal, personalized visual cues—such as variations in line
thickness or compositional emphasis—that carry semantic meaning not explicitly
encoded and reflect individual designer’s habits. As shown in Section 5.3, the interpretive
strategies and procedures discovered are not domain-specific, suggesting that the insights
gained from this study can inform advances in sketch recognition techniques more
broadly, including in mechanical engineering contexts where early-stage ideation also
involves interpreting ambiguous, evolving sketches.

As we saw in the background section, the interest for sketch-based intelligent
design tools is high, there remains a significant gap in their ability to be incorporated into
complex design and engineering work. We now better understand which key function
requirements and knowledge bases make the difference in the ability to understand
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complex sketches. These requirements and knowledge bases needs are generalizable
across design domains. The knowledge provided by our study also opens a new paradigm
of sketch-recognition technique as so far sketch-based engineering tools were either
recognizing parametric primitives like points, lines, circular arcs, etc. to deduce drawn
shapes information, or treating sketches as images in CNNs recognition strategies,
strategies that were reaching limits.

Acquiring the ability to comprehend intricate and ambiguous ideation sketches is
a pivotal aspect of developing novel sketch-based tools that are more closely aligned with
the design process, without impeding the designer's creative freedom and constraining
their drawing behaviors. By aligning with the naturalistic sketch techniques employed by
designers, it becomes possible to facilitate ideation at pivotal moments of design under
uncertainty, where the act of drawing is a primary means of design rather than a mere
representation of the design.

7. CONCLUSION

In this work, a wizard of oz protocol for an architectural design task was set up,
tasking 8 human agents with interpreting the live sketches of 17 designers and producing
focus-appropriate content in response during 1h30, in order to surface future
requirements for sketch-based generative Al systems that could be used in design
practice. To answer our research questions, we have highlighted a three-step human
recognition activity - synthesis, recognition and interpretation - that involves the
mobilization of four knowledge resources - related to the project context, the design
domain, the designer's habits and the designer's intentions - and is enabled by two key
characteristics: visual memory and the dynamic nature of the sketches received in this
experience. Studying this recognition activity highlighted the specific challenges of
understanding complex design sketches and provided insights for designing Al tool
workflows and overcoming the capability gap of current systems.

Based on our results, we find that future sketch-based generative Al tools should
incorporate: (1) integration in the dynamic construction of the sketch and continuous
storage of features in memory; (2) synthesis of symbolic (ruled-based) and connectionist
(probabilistic learning-based) logic to operate various recognition resources; and (3)
extension beyond geometrical models to build a functional model of the object, in order
to be able to generate interesting and accurate inspirational images. Taken together, these
findings can be incorporated into the development of new approaches to recognize
sketches at the fundamental level, and a perspective to recognize sketches that were
previously too complex at the applied level. Finally, they inform the inclusion of new
resources and software architecture within Al tools.

As these results are obtained from a case study run with local professional
designers, subsequent research could include other sketched design tasks to a larger
sample of designers across countries and domains. The next stage of the project will be
the development of a prototype of the proposed sketch-based instrumentation.
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