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ABSTRACT 
 
Despite recent advances in multi-modal AI technology, there remains a significant gap in their ability to be 
incorporated into complex design and engineering work. One such challenge relates to contexts where 
sketch-based inputs are desirable, due to the difficulty in recognizing freehand sketches or interpreting 
underlying human intent. To elucidate requirements for emerging sketch-based AI systems for complex 
design context, we consider an architectural design case-study. Using a Wizard of Oz experimental 
paradigm, we substitute the “tool” with human agents and conduct a lab-based study in which professional 
architectural designers complete a design brief using this “tool”. Here, the human agents execute functions 
such as recognizing freely produced design plans and perspective drawings for downstream applications 
(e.g., generating inspirational images or high quality renders). Observing the human agents performing the 
sketch recognition task, results demonstrate that agents not only rely on visible sketch elements (i.e., lines) 
and architectural drawing codes, but also on their memory of previous lines and their knowledge of the 
design brief to comprehend perceived lines. Agents gradually develop an understanding of the designed 
artifact, but also of the designer's intentions. These activities are crucial for the agent to obtain a functional 
model of the designed object, beyond a purely topological and geometric perception model. Insights about 
this human workflow bring new potential techniques of sketch recognition for design and engineering tasks, 
informing the inclusion of new resources within AI tools. 

1 gbaudoux@berkeley.edu. 
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1. INTRODUCTION 

 
Preliminary design phases define a significant portion of the final performance of 

a designed artifact, impacting both the economy and environmental impact of a project 
[1]. Therefore, it is crucial to make appropriate design choices from the early phases. To 
meet this need, we work on design aid to improve preliminary design, specifically in 
generating and evaluating solutions. A promising approach, according to several 
researchers [2-8], is to use creative ideation and automate analogical reasoning. Indeed, 
idea generation can be driven by analogical reasoning, a recognized powerful design 
strategy that has been studied extensively over the last 20 years, with reemerging interest 
in recent work [3-7]. Visual analogies, in particular, can improve design quality and the 
performance of proposed solutions [8], as well as enhancing creativity by overcoming the 
fixation problem. This cognitive strategy (Fig. 1) involves pairing an inspirational source 
and a characteristic of the artifact to be designed, and then transferring certain properties 
of the source-object to integrate them into the designed object [2]. Analogical reasoning 
is often embedded within domain-specific processes, such as precedent analysis in 
architecture. In this process, the study and reinterpretation of existing design artifacts, by 
drawing inspiration from prior works and applying abstracted principles to new design 
contexts, function both as an inspirational strategy and a design aid. 
 

 
Fig. 1: Pairing scheme in analogy [2]. 
 

In the pathway of automating and stimulating visual analogies, AI image 
generators are a promising tool to support creative activity. These generative software 
programs (e.g. Midjourney or DALL-E) produce images based on text commands, known 
as prompts [9]. While these tools are not inherently performing analogy-making in the 
cognitive sense, by actively proposing design features in complement of representing the 
features prompted, the generative output becomes an external stimulus for analogical 
transfer, and thus serve as an inspirational design aid. Although text-to-image generators 
offer potential for augmenting ideation, they have limitations. As these generators work 
on the basis of text prompts, pausing to write a command to receive images may disrupt 
the designer's flow of thought when sketching. Furthermore, it has been observed by 
researchers that formulating accurate textual prompts can be challenging in practice. This 
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limitation affects the suitability of the received images to the designers' requirements [9, 
10]. Indeed, in design especially, whose primary means of representation is often more 
geometric and diagrammatic than based in text, this challenge is compounded by the fact 
that the semantic expressiveness of natural language often falls short in capturing the 
inherently spatial, geometric, and diagrammatic nature of design thinking and 
representation. Words may fail to fully convey the structural, relational, and 
compositional intentions embedded in a sketch or a plan. This limitation in linguistic 
expression further motivates the development of sketch-based interfaces, which are more 
aligned with the designer’s natural workflow and cognitive strategies. Our broad research 
proposes to investigate the potential of sketch-based generative AI tools that work with 
sketched inputs as complex as whole plans or elevation perspectives to generate the 
inspirational images for designers.  

Despite recent advances in ideation stimulation tools and generative AI, there is 
still a significant need in complex design domains where freehand sketches remain the 
primary medium of ideation, for externalizing and refining abstract ideas [11]. Across 
domains, whether architectural, mechanical, or product, design shares foundational 
characteristics: ambiguity in early ideation, reliance on visual representation, and the 
need to iteratively develop and evaluate functional relationships among components. 
While this study is situated in an architectural context, it investigates cognitive and 
interpretive mechanisms that are domain-agnostic and central to any complex design 
process. The architectural domain presents an interesting case study for improving 
multi-modal AI tools and bridging the gap in the need for sketch-based tools with 
complex and freely produced sketched inputs. We thus envision a future tool for complex 
design environment (e.g. architecture) that suggests inspirational images, based on the 
actual drawings used in these creative phases, to improve generation and evaluation of 
ideas. Figure 2 illustrates the prospective design activity with such a tool and which part 
of this process will be performed under Wizard of Oz. 

 

 
Fig. 2: Diagram of the prospective design activity with Wizard of Oz sketch-based tool 
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In our previous work [12,13], we demonstrated the added value of using sketch 
input for non-disruptive tools. We indeed studied the design activity under sketch-based 
inspirational stimuli, and we demonstrated that sketch-based AI tools retain the 
well-known benefits of generative AI for ideation while overcoming their limitations by 
sending images that are more accurate to the object designed and with no disruption of 
the design flow [12,13]. In these studies, sketch-based generated images were also used 
for larger activities than only idea generation. However, we now need to study how to 
achieve the recognition of design sketches. As such, this study is positioned prior to any 
prototype development, and the focus in this paper is on the human agent's sketch 
recognition activity. The purpose of this paper is to explore the potential features needed 
for a tool for architectural design sketch recognition and inspirational image generation, 
with the goal of gaining a better understanding of the necessary inputs, including data and 
rules, to improve architectural line-by-line sketch recognition. To accomplish this, we 
assume that observing the human workflow in performing the task of interpreting 
architectural line-by-line sketches could provide the necessary information. This 
assumption is grounded in prior research in design cognition and human-computer 
interaction, which has shown that studying expert behavior and human agent strategies 
can inform the development of intelligent tools [14, 15].  

With the overall broad goal to move design aids forward by automating searches 
for inspiration with highly project-relevant stimuli of analogical reasoning, which calls 
for sketch-based systems capable of interpreting early-stage design input, a necessary 
first step in this trajectory is to gain insight into how to overcome current technical 
limitations in sketch recognition—specifically, by informing how systems might interpret 
the evolving functional and semantic content of freehand drawings. To inform this, we 
aim to answer the following two research questions: 
-​ What strategies and knowledge do human agents mobilize to understand the semantic 

meaning conveyed by graphic lines in design sketches? 
-​ What procedures do human agents develop to transfer the features of sketched 

representations into a mental model of the design represented? 
 
To gain insight into the functionality of sketch-based generative AI tools, this 

paper begins with a background section on sketching in design, design cognition, and 
design theory (section 2). It will then cover some key elements of current research on 
sketch-based AI tools for architectural design. This establishes what is currently possible 
and what does not yet exist (section 3). Next, a Wizard of Oz experiment is set up, 
substituting the tool with human agents, to observe the human workflow in performing 
the architectural sketch recognition task (section 4). By understanding the resources and 
cognitive strategies used by human agents to interpret complex sketches, we provide 
insights about procedures and rules, but perhaps more interestingly about the knowledge 
bases mobilized, as well as the challenges involved with such a complex task of sketch 
understanding (see section 5).  The research outcomes will be valuable for various design 
domains, offering new possibilities for shaping AI tool workflows when textual inputs 
are not applicable, and other modalities of interaction would be more applicable (e.g., 
sketches), while keeping human agency over the interactive process intact. 
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2. THEORETICAL BACKGROUND: SKETCHING AND DESIGN COGNITION 
 
This section summarizes theoretical foundations from design cognition and design 

theory that are particularly relevant for AI systems intended to interpret freehand design 
sketches. Preliminary design phases rely heavily on external representations, particularly 
freehand sketches, not only as a means of expression but as tools for reasoning, memory, 
and decision-making. Within cognitive design research, designing is understood as a 
process distributed between internal and external cognition [8]. The designer develops 
internal mental representations while also producing external ones, like sketches, 
diagrams, and drawings, which act as cognitive artifacts [8], structuring the evolution of 
the design concept. These external representations materialize information in tangible, 
persistent, and manipulable forms, allowing it to be reformulated, reinterpreted, and 
rediscovered [8]. They reduce mental load by shifting cognitive effort to perceptual 
processes and the environment, thereby supporting faster and more efficient reasoning 
without requiring continuous verbalization or internal recall. Through this 
externalization, sketches contribute directly to ideation by supporting exploratory 
behavior and sustaining ambiguity—a key condition for creative design thinking [3]. 
Moreover, the way information is graphically structured influences how it is perceived 
and acted upon, shaping the designer’s behavior [8]. In this sense, the sketch not only 
represents an object, but also serves as a dynamic and evolving interface between thought 
and action. Its apparent incompleteness allows for reinterpretation and reframing, often 
revealing latent ideas or prompting new directions. Sketches also function as temporal 
traces of the design process, anchoring past decisions and mediating dialogue between 
designers and stakeholders. These traces become intermediate objects, resources that 
carry forward the project’s conceptual development and support its ongoing 
transformation. Over time, sketches tend to evolve, progressively clarified into more 
synthetic, communicable forms [11]. This transformation involves multiple layers of 
refinement: graphical simplification, reduction of ambiguity, increased precision, and, 
often, the selection of a preferred solution among alternatives [11]. Far from being a 
purely graphical task, this process reflects an intensification of commitment and a 
reconfiguration of the design problem, aligning representational clarity with cognitive 
and communicative needs. 
 
3. CURRENT SKETCH-BASED AI TOOLS 
 

This section outlines a state-of-the-art of sketch-based tools within the context of 
our design research area, based on historic references that we completed with a 
systematic review of the recent literature. For the systematic review, following the 
PRISMA 2020 guidelines [16], a search of the Google Scholar and Scopus databases was 
conducted using the following search terms: "sketch* AND design AND (recognition OR 
interpreta*)"; and "sketch* AND generate AND architect*". From the 17,600 results of 
papers since 2020, two researchers independently analyzed if the returned papers were 
meeting the criteria of discussing an AI tool (by opposition to, for example, CAD tools), 
taking sketches as input, to aid design activity (by opposition to some paper focused on 
the design of the tool but not serving design activities) in engineering, architecture or 
product design domains (i.e. from domains most relevant to our context or research). 
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After reviewing the title, abstract, and keywords, most of the initial 300 results were 
discarded. The remaining 39 papers were read in their entirety. Finally, 8 studies showed 
to be eligible, as they were studying AI tools recognizing design sketches from 
engineering, architecture or product design domains (Fig. 3). 

 

 
Fig. 3: Diagram of the paper selection process. 
 

Based on this review of the recent literature and on the historical state-of-the-art, 
the following subsections investigate each of the proposed tools’ three features - sketch 
as an input (first section), recognition of more specifically architectural sketches (second 
section), and inspirational images as an output (third section) - before concluding with a 
synthesis of the overarching challenges and research gaps identified across these areas 
(fourth section). 
 
3.1. Sketch-based tools in design domains 
 

Sketch-based tools have been studied for a long time in academic design research 
and have evolved to understand more and more hand drawings for a wide range of 
applications. A first foundational contribution was Sutherland’s Sketchpad [17], a 
groundbreaking system that introduced the concept of interacting with a computer 
through graphical input like line drawing. In the late 1990s, mechanical engineering 
researchers developed design aids based on sketches, such as SketchIt [18], ASSIST [19], 
and UDSI [20]. These technologies were capable of interpreting line pixels to generate 
geometric shapes and abstract drawings by combining direction and speed information 
[18, 19]. They could also recognize text, geometric shapes, arrows, and expected symbols 
[18-20]. Thus, they were able to comprehend a drawing, and descriptions of the desired 
behavior, in the case of ASSIST or SketchIt, to generate the corresponding component. In 
mechanical engineering, it was even possible to suggest variations of these components 
[18]. 
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Over the years, different types of input have been developed, such as 2D drawings 
in plane, 2D drawings in multiple specified planes forming a 3D space, immersion 
drawings in a 3D model, or perspective drawings [21]. However, the initial SketchIt, 
ASSIST or UDSI tools were only capable of recognizing simple, clean-lined drawings 
composed of basic geometric shapes and pre-encoded symbols [18-20]. 

More recently, Seff et al. [22] have perfected the recognition of hand drawn 
engineering components (Fig. 4d) using developed image-conditional primitive models 
and constraint models, able to recognize the parametric primitives (points, lines, circular 
arcs, etc.) typically composing the engineering sketches [23], to generate the 
parametrized CAD model of the component. Wang et al. [24] and Zhang, Guo and Gu 
[25] have achieved the 3D shape reconstruction of a designed product respectively solely 
based on a single-view or based on a single sketch but accompanied by the viewpoint 
specification. 

To support visual and multi-modal design-by-analogy in the engineering design 
process, Jiang et al. encourage the development of novel tools to process non-textual 
inputs such as sketches, images, or 3D models [6]. Zhang and Jin propose a framework 
for the search and retrieval of visual stimuli to enable the discovery of visual analogies 
from large datasets of design materials (e.g., sketches, CAD drawings, photographs, etc.) 
based on designers’ initial sketches [26]. They demonstrate how visually related sketches 
to a designer’s sketch-based input can be discovered to support visual analogy [27]. Kim 
et al. also develop a co-creative sketching AI partner to provide inspirational sketches 
based on visual and conceptual similarity to a designer’s sketch [28]. Arora et al. [29] 
developed a sketch-based tool that generates new sets of inspirational sketches based on 
input images of rough sketches from the designer. Some tools can additionally recognize 
motion significance arrows and propose 3D-model solutions that meet sketched 
mechanical constraints [30]. Image-based search has also been explored by Jiang et al. to 
retrieve visually relevant patent images [31] and by Kwon et al. to discover alternative 
uses for products [32]. Beyond tools that support image and sketch inputs, Kwon et al. 
built a multi-modal platform to retrieve 3D-model parts based on similarities in visual 
and functional features to 3D-modeled inputs specified by the designer [33].  

While the surveyed list is not exhaustive, the analysis of current state-of-the-art 
points to limitations in managing the complexity, amount of information, and vagueness 
of design sketches. For example, sketches used as input in these tools are clean and 
unambiguous (e.g., see Fig. 4), and not representative of naturalistic design sketches. The 
difficulty in achieving robust recognition of  the typically drawn ideation sketches is due 
to two reasons according to Zhang et al. [34]: firstly, naturalistic sketches contain rich 
color and texture information; secondly, drawing styles vary from person to person. 

In the field of architectural design, some researchers have attempted to address 
the task of recognizing architectural sketches, like Valveny and Marti [35], Lee et al. [36], 
Sketch It Make It [37], SolidSketch [38], EsQUIsE [39], and NEMo [40]. They differ 
slightly from other design tools mentioned above: in addition to the sketch recognition 
strategies used in engineering design, these tools include disambiguation steps and are 
trained to recognize typical architectural drawing codes (Fig. 5), as well as written 
characters to understand room labels and common annotations. But these prototypes 
demonstrate that architectural sketch recognition is currently achieved by limiting the 
drawing process to conform to drawing codes that can be understood by the software. 
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The most advanced sketch recognition prototype to date, to our knowledge, is NEMo, 
which was developed in the 2010s. Subsequent research on architectural sketch 
recognition, such as SketchPointNet by Wang [41] or SketchGAN by Liu [42], focused 
on the performance of neural or deep learning systems and was only applied to tasks that 
involve interpreting representation of everyday objects based on pre-coded CAD plans or 
3D models rather than freehand sketches. 
 

(d)  
Fig. 4: Type of sketches managed by recent tools [respectively 27, 29, 30, 22]. 
 
 

 
Fig. 5: Illustration of EsQUIsE [39]. 
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3.2. Generative AI tools for image generation 
 

When searching for sketch recognition tools that generate images, some tools are 
designed to aid in the ideation process by providing either inspirational or rendered 
images. It is important to note that this area of research is undergoing rapid development, 
and the references displayed below represent a sampling of innovative work, rather than 
an exhaustive literature review. Instrumented co-creation was already being studied 
around or even before 2015, prior to the recent surge in AI image generators. For 
example, the Electronic Cocktail Napkin [43] retrieves and displays architectural 
components related to the designer's sketch. Drawing Apprentice [44] is a sketching 
support tool that responds to the designer's sketch by sending a similar sketch, thus 
maintaining engagement in design. Sentient SketchBook [45] and 3Buddy [46] are two 
design tools aiming to improve the designer's exploration of the solution-space through 
ideation human-machine conversations. They provide more goal-oriented accurate 
outputs. Two recent sketch-based tools for co-creation by image generation are of 
interest: 

Sketch2Pix (Fig. 6) is an interactive application that supports architectural 
sketching augmented by an automated image-to-image translation process [47]. 
Designers can sketch using augmented brushes that translate strokes into 
pre-programmed images. For instance, they can quickly create a perspective sketch by 
using pre-trained brushes like 'fence' or 'hedge' to draw rendered fences or hedges. The 
Creative Sketching Partner (Fig. 7 [48]) and the similar Collaborative Ideation Partner 
[24] are interactive systems that recognize a current design sketch and propose a response 
sketch (CSP) or an image (CIP) from another category or domain that shares some 
structural or semantic aspects. The response sketch is modulated by specified level of 
visual/conceptual similarity. 

 
Fig. 6: Composition of a sketch using preset brushes [47]. 
 

 
Fig. 7: Examples of participants’ new sketch based on inspiring sketch [48, p. 225]. 
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3.3. Research gap 
 

This background synthesis highlights a gap in current tools: there is a lack of 
sketch-based generative systems capable of interpreting the complex, informal, and often 
non-pre-coded representations typical of early-stage design drawings (e.g., Fig. 8), while 
also providing designers with relevant, inspirational visual stimuli. Most existing AI tools 
rely on text-based inputs, and while recent advances in AI have expanded image 
processing capabilities, these systems are not yet equipped to handle the dynamic, 
line-by-line nature of design sketches [49]. Current generative tools often perform well 
with structured or pre-coded inputs but fall short when applied to the fluid and 
characteristic nature of sketching in design practice. Indeed, design sketches encompass 
layers of graphical traces that are more personal habits of representation than 
standardized symbols. As an example, a thickness of line will convey a materiality 
information but unless the system is calibrated on the individual designer’s personal 
drawing habits, how to define what is thick and what is thin? This reveals a broader 
research challenge: understanding what makes the recognition of design sketches 
uniquely difficult, and what interpretive capabilities are needed to bridge that gap.  
 

 
Fig. 8: Examples of typical architectural ideation sketches (extracted from our study). 
 
4. MATERIALS AND METHODS 
 

This section describes the experiment conducted to simulate the task of sketch 
recognition with human agents using an architectural design case study. It begins by 
explaining the global experiment and the task, as well as the implementation of the 
physical space, data collection, and coding. 
 
4.1. General experiment procedure 
 

To better understand the challenges of this proposal and to develop an 
ecologically valid aid, we seek to recreate a realistic design task context. By ecologically 
valid, we refer to the extent to which the experimental setup reproduces the conditions, 
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constraints, and workflows of real-world architectural design practice. Instead of 
providing pre-selected sketches to human agents for recognition, we simulate a design 
situation in which professional architects create a single-family house project based on a 
given design brief, so that human agents are faced with naturalistic design sketches to 
perform the sketch recognition task. Designers sketch on a tablet using a drawing 
software specifically developed by some researchers [50] to closely replicate analog 
drawing tools (e.g., paper, fine liners, markers), and offering a curated set of colors2 
designed to reduce cognitive load while supporting the expressive needs of architectural 
design. Unlike paper sketches, which would require scanning or photographing—thus 
interrupting the workflow or reducing image quality—the digital drawing tool ensures 
high-quality, real-time access to the evolving sketches for the human agents while 
supporting fluid interaction for the designers. Over a 1h30 session, designers interact with 
the “intelligent tool”, which manages these dynamic, evolving sketches and provides live 
inspirational images and project’s representations based on their input. These live visuals 
are shown to the designer on displays. 
 

As we were studying how human agents recognize complex naturalistic sketches, 
underperforming the role of the “sketch-based tool”, we implemented a Wizard of Oz 
technique. Indeed, the Wizard of Oz technique consists of simulating the functionalities 
of an innovative technology by replacing them with equivalent human work, hidden and 
in real time. In this way, the tool user believes that he/she is using the so-called 
technology without the need for it to be developed. This makes it possible to assess in 
advance its impact on users and their interaction with the machine [51] and thus help to 
figure out the development needs. Prior publications from our team have investigated the 
designer’s activity [12, 52] and usage of this tool. We have observed a creative exchange 
between the designer and the tool, which was used as an informative, evaluative, and 
creative resource. This was achieved through design by analogy and project 
rediscoveries. Our focus in this paper is thus now the sketch recognition part of the 
“intelligent tool”, through the human agent's sketch recognition activity. Figure 9 shows 
our Wizard of Oz set up. 
 

 
Fig. 9: Experiment principle - a design session instrumented through a Wizard of Oz 
protocol. 

2 The software gives the users access to black, blue, green, yellow, orange, red and purple in two thickness 
(see Fig. 8). 
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The content generated by the human agents is transmitted to the designer with the 

objective of capitalizing on the potential of analogical reasoning and stimulating ideation 
with inspirational stimuli and project rediscovery. Figure 10 illustrates the “tool”'s ability 
to transform sketches into content that can then be employed in design activities. 
 

 
Fig. 10: Example of input from the designer, corresponding output of the agents and 
design iteration based on these outputs. 
 
4.2. Simulated software’s task 
 

In accordance with the Wizard of Oz principle, human agents are placed in the 
same conditions as the tool. They receive the real-time evolving sketch from the designer 
in the adjacent room and are informed of the design brief, including the site and program. 
Each human agent has a specific sub-role. This team includes an "image agent" who 
searches for inspiring images online, a "2D agent" who creates a normalized clean plan of 
the building to be designed, a "3D agent" who creates a basic 3D model of the building, 
and a "coordinator" who manages the team and triggers the sending of the agents' 
creations back to the designer every 5 minutes. During this five-minute interval, the 
designer continues to engage in sketching and design activities. This choice of interval 
length was made to be as closely following the design flow as possible, while giving the 
human agent a needed minimum of time to successfully materialize the design 
modifications in their productions. A side analysis [53] demonstrated that the human 
agent successfully achieved this target rate of visual stimuli updating and that the 
designers considered the system’s reaction time to be satisfactory and non disrupting for 
their activity. Indeed, the length of the task is pretty long, shortening the perception of 
that interval of time, and the way of using the tool (for inspiration and design 
conversation with external representations) is less likely to be impacted by that span. For 
the roles of the three agents (i.e. the three tool's functions implemented), three axes for 
stimulating ideation are chosen here, identified as key design aids in our prior work [11, 
13, 52]: (i) fostering analogical reasoning, by providing inspirational images, to stimulate 
creativity and the generation of solutions; (ii) presenting different points of view and 
representations of the designed artifact to encourage rediscovery from another angle and 
thereby error detection, solution evaluation and the generation of more satisfactory 
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solutions, (iii) fostering the interactive dimension of design in its perceptual iterations. To 
implement these functions, we selected the three tool’s features of providing 
focus-appropriate inspirational images, cleaned-up 2D plans of the project and a rough 
3D model of the project. 

The human agents work in parallel to their respective production tasks (image, 
2D, and 3D). To place them in the same conditions as the future technology they are 
simulating, the modelers have been given specific instructions to follow: 
-​ forbidding them to design an architectural proposal, their role being limited to 

translating the received representations; 
-​ providing them with a 2D and 3D library of standard furnishings to use by-default; 
-​ specifying the by-default measurements to be assumed, unless otherwise stipulated by 

the designer, for wall thicknesses, ceiling heights, roof slopes, etc. 
-​ providing them with the site’s layout plan and the 3D model; 
-​ informing them of the content of the architectural design brief; 
-​ asking them to be coherent across the 2D cleaned-ups and 3D model. 
 
4.3. Design task 
 

The design brief on which these respective instrumented design tasks and sketch 
recognition tasks were performed was chosen to be the architectural design of a 
single-family housing for a young couple with two children, on sloping terrain in an 
urban setting in between two conjoined other houses.  The expected rooms included : an 
entrance hall with vestiaire; two toilets; a fully-equipped kitchen; a living and dining 
room for 6 people; an office room; a master bedroom; two children's bedrooms and a 
space for children to play; a guest bedroom; a family bathroom; a garage for a small 
motorbike and bicycle; and a deck, garden and garden shed.   

Instead of using a simple task that would necessitate minimal specific background 
knowledge and speak to a majority of non-domain-qualified participants, our study was 
grounded in a realistic architectural design brief, selected to elicit the kinds of complex 
and expressive sketches that future sketch-based tools would need to interpret. Moreover, 
by choosing this particular scope and nature of architectural brief, we ensure that the 
design is sufficiently challenging to maintain the engagement of the designers, and 
providing a valid justification for the use of stimuli instrumentation, whilst still 
guaranteeing a satisfactory level of design achievement by the conclusion of the 
90-minute design session (Fig. 11). This scope of architectural brief also remains within a 
manageable scope for the human agents’ task of stimuli production. 
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Fig. 11: Overview of the 17 final design propositions. 
 
4.4. Participants and data collection  
 

Empirical data for the sketch recognition task analysis resulted from 8 different 
individuals executing functionality of the ‘tool’ as human agents during 17 design 
sessions (Table 1). The 8 human agents were all graduate students in a 5-years major 
fusioning architecture and civil engineering in one program, meaning they were 
proficient in reading architectural floor plans, CAD drawings, and 3D modeling. They 
were selected based on their performance in a preliminary assessment, and those who 
passed the performance test subsequently received 1.5 hours of training (to ensure 
productivity but also consistency independently of their personal styles). Each human 
agent was assigned the sub-function (either reference image, 2D CAD plans, or 3D 
model) in which they demonstrated the greatest efficiency and they assumed that same 
sub-function for each design session (Table 1). On the other end, the 17 designers varied 
in gender, professional experience, and architectural sensibility (Table 1). The 
professional designers were either architects (from architecture schools) or 
engineer-architects (having previously majored in the same program combining civil 
engineering and architecture described above). All the designers have a similar expertise 
level in designing a building proposal that address this experiment’s brief and have had 
similar training in conceptual design, architectural sensibility and residential housing 
design. 
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Table 1: Experiment population. 
 

 

15 
 

Agents Gender Age - years Background Experience Role 

1 Male 26 Eng. Architect Student Images 

2 Male 23 Eng. Architect Student 2D CAD 

3 Female 23 Eng. Architect Student 3D model 

4 Female 22 Eng. Architect Student Coordinator 

5 Male 22 Eng. Architect Student Coordinator 

6 Female 21 Eng. Architect Student Images 

7 Female 22 Eng. Architect Student 3D model 

8 Female 21 Eng. Architect Student 2D CAD 

Designers Gender Age - years Background Activity Experience 

1 Male 52 Eng. Architect Agency Senior 

2 Female 24 Eng. Architect Agency/Research Junior 

3 Male 25 Eng. Architect Agency Junior 

4 Female 34 Architect Agency/Research Intermediate 

5 Female 30 Eng. Architect Agency Intermediate 

6 Male 30 Eng. Architect Agency Intermediate 

7 Male 48 Eng. Architect Agency Senior 

8 Male 30 Architect Research Junior 

9 Male 28 Eng. Architect Agency Junior 

10 Female 31 Eng. Architect Agency Intermediate 

11 Female 24 Eng. Architect Agency Junior 

12 Female 40 Eng. Architect Agency Senior 

13 Male 33 Eng. Architect Agency/Research Intermediate 

14 Male 45 Eng. Architect Agency Senior 

15 Female 25 Eng. Architect Agency/Research Junior 

16 Female 27 Eng. Architect Agency Intermediate 

17 Female 27 Eng. Architect Agency Intermediate 
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The 8 agents are observed interpreting sketches during these 17 
one-and-a-half-hour design sessions, resulting in 54 hours of sketch recognition. The 
actions of these human agents were recorded through room and screen recordings, 
allowing for observation of their activities using the AEIOU format to structure field 
observations [E-LAB, in 54]. We then conduct self-confrontation semi-structured 
interviews with the agents. Based on these recordings, we identify questionable and 
illustrative moments, i.e. every disruptive moment or ones diverging from usual design 
activities theories. We then discuss these moments with each human agent, showing them 
the pre-selected video samples and asking them to explain the rationale behind their 
actions. The starting questions are “How were you able to recognize this part of the 
sketch? What was your strategy and the elements you used?”. We then elaborate on their 
answers with new questions, individually adapted to the discussion. This approach allows 
us to access an extensive collection of overall representative behaviors, as well as 
singular unexpected behaviors and their declared workflow. 
 
4.5. Data coding 
 

The interviews are transcribed and coded according to the principles of the 
Grounded Theory Method, following a method of coding elaborated by Lejeune [55], 
which consists of conceptualizing each declared action as a “tag”, visually represented by 
a verb in a box. Each action noted in the AEIOU method has been treated with the same 
coding method. We kept adding each action ever declared by at least one agent in the 
interviews or observed by the research through AEIOU. When saturation is achieved, 
meaning that all declared or observed actions are represented by a tag, we qualify the 
articulation between them. These relations can be conjoint (indicated by a green arrow), 
inverse (red arrow), or dependent on conditions (dotted link showing the condition). This 
approach of coding, by applying labels to describe what is happening, relies on an 
abductive interplay between data and researcher. When conducted rigorously and to 
saturation, it is recognized by many researchers as a robust, empirically grounded 
method. It is particularly powerful for studying phenomena that remain under-explored, 
as it supports the emergence of greater conceptualizations from the data [56]. 
 
5. RESULTS 

 
This study aims to understand the challenges of sketch recognition in design 

contexts by characterizing the human workflow in performing this task. Using an 
architectural design task as a case study, we examine the resources utilized to understand 
the architectural object being designed, as well as the procedure constructing a mental 
model from received graphic features. Based on the data collected documenting the 
sketch recognition task, and following Lejeune’s GTM method [55], we construct  the 
diagram shown in figure 12. The diagram offers a comprehensive overview of the actions 
and sub-actions carried out by the human agent to accomplish the sketch recognition task. 
The diagram demonstrates how each action either enables or prevents subsequent actions, 
as well as the conditions associated with them. To structure the analysis, we identified 
clusters of actions that shared a common purpose or strategy. This clustering process 
continued iteratively until the entirety of the diagram was accounted for, ensuring that all 
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actions and links were covered. These clusters informed the development of the strategies 
and knowledge bases presented in the following subsections 5.1 and 5.2. Finally, in 
section 5.3, the holistic diagram of the overall process will be presented in detail, in a 
sequential manner. 

 

 
Fig. 12: Grounded Theory Method diagram describing human agents’ actions. 
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5.1. The need for a functional model 
 

As a first result, the GTM diagram shows that human agents seek to identify the 
function of the elements sketched, beyond just shapes and symbols (Fig. 13). It appears 
that in addition to information on shapes, zones and symbols, agents need information on 
function-spaces, furniture and functional characteristics. This means that building a 
geometric and topological mental model (shapes and relations representing an item) is not 
enough to collect all the data that will be needed to understand the sketch and produce the 
required images. Rather, human agents will push their understanding of the sketch to the 
construction of a functional mental model of the designed object (functions and 
characteristics of the item represented), in order to be able to carry out their production 
tasks.  
 

 
Fig. 13: Seeking for functional information (extract of Fig. 12 for functional cluster). 
 
5.2. A three step sketch recognition process 
 

In order to progress from the initial sketches to the construction of the functional 
mental model of the designed object, agents employ three distinct strategies : line 
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synthesis, line recognition, and line interpretation. These three strategies appear to be 
applied in the sequence indicated. The following sections provide a detailed account of 
each of these strategies. 
 
5.2.1. Line synthesis 
 

Architects often multiply the lines symbolizing the same element to reinforce its 
mass or confirm its location. They also sketch both the alternatives and the final proposal 
often on the same drawing, superimposing the different solutions and then anchoring 
their final choice by passing over its lines several times. It is thus necessary to 
differentiate between strokes representing architectural elements, graphic construction 
strokes, annotation strokes, texture strokes and stylistic strokes. When seeing the sketch, 
the first action of the agents is to synthesize the lines, as declared in this illustrative 
example, an agent said that “He [the designer] draws a lot of short parallel lines close 
together, so we understand that it's a texture of material. A lathing of something. It's very 
different from the long, rather straight strokes he makes afterwards for walls (...) And 
then he'll go over the same wall lines several times, so we know there's no new 
information”. Agents sort perceived lines into three families: lines that mean nothing, 
lines that embellish and lines that convey information. Only the latter are retained and 
anchored in the agent's visual memory at the end of this synthesis action. 
 
5.2.2. Line recognition 
 

From the lines selected during the synthesis stage, the agents now perceive 
various closed or open shapes defining spaces with certain adjacent or inclusive 
relationships between them, as well as symbols.  An agent said about a drawing: “it's the 
rectangular geometric shape formed by four long, more or less straight lines that makes 
it a room. (...) And here we have a series of parallel or perpendicular lines that form a 
solid U inside the earlier rectangle. Next, we'll be able to tell that this is kitchen 
furniture”. The agents thus recognize these lines as shapes located in relation to each 
other, which means that they construct a topological geometrical mental model of the 
drawn object. 

As shown in the GTM diagram (Fig 14), the agents use the memorization of 
previously seen lines which are no longer necessarily visible, either because they have 
been erased or because they are in another part of the drawing sheet, to combine with the 
lines still visible. This is essential here to build a mental model of the whole object and 
not just the part visible at the moment. This also helps build-up a global understanding of 
the drawing, rather than a collection of snapshots of unrelated parts of the object. This 
memory effect is particularly essential for architectural sketches that develop over 
several building levels or drawings in plans, sections and elevations. 
 

19 
 



J. Mech. Des. 
 

 
Fig. 14: Using memory to gather information (extract of Fig. 12 for memory cluster). 
 
5.2.3. Line interpretation 
 

The last strategy carried out by human agents to move from the topological 
geometric mental model they have so far constructed to the functional mental model they 
need is the most complex, and the one that brings out a number of very interesting 
knowledge bases. The GTM diagram reveal that to interpret the visible geometry and 
deduce the functions and characteristics of the shapes, agents call on 4 key resources: (1) 
knowledge of the context, (2) knowledge of the designer, (3) knowledge of the design 
domain, and (4) knowledge of the designer's intentions (Fig. 15). 
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Fig. 15: Knowledge bases for interpreting lines (extracts of Fig. 12 for 1- context, 2- 
domain, and 3- designer knowledge bases clusters). 
 

Contextual knowledge refers to known information about the requested 
requirements, the intended use, and the phase of the design process in which the session 
takes place. It enables the agents to deduce a number of characteristics expected in the 
designed project. For example in architecture, on a steeply sloping site, you can expect at 
least two levels (one at garden level, the other at street level). Based on the width of the 
lot, they can guess whether it's a semi-detached, 3-facade or 4-facade housing project. 
Knowing that a playroom and an office are required means that these functions can be 
found in the spaces drawn, even if the layout of the rooms is not shown. 

The knowledge of the designer refers to a learning mechanism of the agents. 
They start to learn the personal codes of representation used by the designer to better 
understand the sketches. One subject, for example, began to use colors to identify the 
different types of rooms–bedrooms, bathrooms, corridors, etc.–which the agents then 
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understood (Fig. 16a) and used as information to better understand the project’s 
evolution.  
 

a. b.  
FIGURE 16: a. Example of construction of the knowledge of the designer b. Color 
coding in component sketching. 
 

This learning process is as much about absorbing personal drawing codes (colors, 
symbols, abbreviations, etc.) as it is about design methods (designing plan by plan, 
progressing in detail, going back and forth between plans and sections, testing different 
versions with little detail, etc.). The agents also mention a recurrence across all the 
designers in the color codes used. In our case, walls are represented in blue or black, 
while the detailed layout is represented in orange, blue or black, and the annotations are 
made in the other yet unused colors or in black. In addition, blue commonly symbolizes 
glazing or water; green, vegetation; yellow, light; and orange, wood (Fig. 15-3 et 16b). 
Black remains the default color.  

The use of color codes should be tempered. Although the meaning of a color is 
consistent and not changed by the designer during its design process, all elements of the 
same essence are not systematically colored. For example, an element is colored blue in 
the façade to emphasize its glazed nature as opposed to the solid door, but this does not 
mean that everything that is not blue is not glazing (Fig. 16b). So color is information, 
but the absence of color is not. 

The knowledge of the design domain refers both to knowledge of drawing codes 
and to the principles of good composition. Drawing codes are, of course, the least 
ambiguous way of identifying drawn components. For example, in architecture, a thicker 
wall is a cut or load-bearing wall, as opposed to a low wall or partition, which is drawn 
thinner [57, 58]. Doors, staircases, dining tables, beds, sinks, bathtubs and toilets all have 
their own symbols (Fig. 17). By extrapolating these codes, a room will be a bedroom if it 
has a bed, a kitchen or dining room if it has a table. Finally, components are also 
sometimes listed or labeled in the sketch. 

But beyond drawing codes, knowledge of the design domain composition 
principles and what can be expected, here in architecture for example in terms of spatial 
planning, can be used to deduce the meaning of uncoded lines. A shape can be 
understood because it is associated with another, reducing its potential for meaning to a 
single solution. Let's take a circle as an example (Fig. 18): this basic shape can, a priori, 
symbolize many things in a house, such as an area, a rug, cooking stoves, a table, a chair, 
etc. If this circle is intersected by other strokes and is wide, it's more likely to be an 
annotation delimiting an area. If it is in the middle of a room, it represents a rug. If this 
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circle, in the middle of a room, is surrounded by smaller identical circles, squares or 
lines, it symbolizes a table. If, on the other hand, it is grouped with one or three other 
circles, all inscribed in a rectangle or square, it represents a stove. The scale of the lines 
also plays a role in interpreting the sketches. Take the same rectangle, thin and long, with 
its two diagonals marked: this is the architectural code for a tall cabinet. However, if this 
rectangle takes up a third of a room's surface area, it becomes the cross symbolizing the 
emptiness of a mezzanine (Fig. 18). And this can only be deduced if the agent 
understands architectural design principles. 

 

 
Fig. 17: Example of common furniture symbols and codes. 
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Fig. 18: Illustration of the various meanings of a shape depending on its graphical 
context. 
 

Finally, their knowledge of the designer's intentions is built up as the design 
session progresses and as the functional mental model of the designed object is 
constructed. The agents perceive the concepts and principles structuring the proposal that 
the designer sketches out as they go along, which helps agents deduce where the designer 
is going. This progressive iterative understanding of the designer's design intentions is 
also possible thanks to the agents' domain knowledge. 
 
5.3. Holistic human agent’s workflow 
 

With a better understanding of the recognition actions, strategies, and resources 
used, we can summarize the human agents' complex sketch recognition activity using the 
following holistic model (Fig. 19). 
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Fig. 19: Holistic model of the sketch recognition process. 
 

This process begins with the capture of the sketch (far left) and progresses 
through three recognition steps (line synthesis, recognition, and interpretation) before 
ending with the start of the task of producing the deliverables that the "software" sends 
back to the designer (far right). This workflow starts with the initial lines being used to 
create a mental model of the sketch by performing visual filtering to remove unnecessary 
lines and retaining only the synthetic lines. The features - together with the memory of 
other previous lines - are recognized as elements (shapes, zones, component symbols, 
etc.). This model is then used to complete the synthetic features received with the 
previous features. By combining their knowledge of the design context (brief, 
requirements), the subject's personal drawing codes (gradually built up), their domain 
knowledge (sequences of design steps, expectation of specific functions or forms, etc.), 
and the designer's intentions (also gradually discovered), they are able to interpret the 
geometric and topological mental model. This interpretation results in a functional model 
of the designed object, which identifies the various elements, their boundaries and 
connections, and the aesthetic/functional characteristics of these elements. The functional 
model provides feedback on the designer's intentions and personal drawing codes to the 
agents. The agents then produce the various requested deliverables like inspirational 
images and other external representations to stimulate the designer's creativity in line 
with their intentions and the project's direction. 

In addition to the discovered resources and strategies, we observed two interesting 
phenomena : the usefulness of the dynamic evolution of the sketch and the need to make 
design choices. Indeed, beyond all the possible deduction of the meaning of lines, the key 
to understanding complex sketches lies in their dynamic evolution. Understanding a 
sketch taken from its context and frozen at a given moment in time can be extremely 
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complicated. The temporality of the appearance of lines, and the knowledge of the project 
built up as it is represented, is a crucial key to understanding the complex sketches. 
Furthermore, for some of the sketches they received, the agents had to make design 
choices, despite their instructions to stick to representation, in order to accomplish their 
task. For example, when designers don't draw design components to a realistic scale, 
agents have had to decide between respecting the proportions of the drawing and 
therefore representing components that are larger, or smaller, than it should be, or 
drawing the element with the correct dimensions and therefore not resulting in a proper 
design. The boundary is a tricky one to define, as designers are just as likely to design 
custom-made elements with specific intentional characteristics, as they are to employ 
standardized common elements. How, then, to distinguish between an intentional 
uncommon specification and a representational error? Faced with this difficulty of 
positioning, the agents were asked to represent the object as drawn, even if it was 
seeming wrong in the design, waiting to be corrected if necessary. Some designers thus 
became aware of their errors thanks to the "software". 

Producing and documenting a model such as shown in Figure 19 provides insight 
into the strategies and knowledge mobilized by agents to comprehend these intricate and 
complex sketches, beyond the context of the present study. These strategies are 
transferable between design domains, whether from architecture or another field, as they 
concern the processing of features received and the calling up of knowledge bases. 
Furthermore, understanding how humans perform this recognition task allows us to 
document different strategies, moving beyond the constraints of current operating logics 
known to software, and informing new ways of thinking. 
 
6. DISCUSSION 

 
6.1. Study limitations and strengths 
 

This study adopts a qualitative case study approach grounded in the principles of 
the Grounded Theory Method (GTM), and it is important to acknowledge both its 
methodological limitations and strengths. Rather than aiming for statistical 
generalization, this study seeks to generate conceptual insights into sketch recognition as 
a situated and interpretive process. Through a rigorous coding process carried out to 
saturation, an established benchmark in qualitative research, we identify stable and 
internally consistent patterns that reveal how agents construct a mental model of the 
design artifact. As such, the gained insights do not aim to predict or quantify sketch 
recognition behaviors but serves as a foundation to inform both future empirical 
investigations and the development of AI tools for complex design tasks 

Furthermore, the Wizard of Oz setup allowed us to simulate a future AI tool with 
high fidelity, enabling the extraction of key sketch recognition strategies that would 
otherwise be speculative. But this protocol relies on human agents whose interpretation 
and responsiveness may differ subtly from a real AI system, particularly in terms of 
consistency, speed, and error tolerance. As highlighted in the related work section, a 
Wizard of Oz setup was necessary as an AI implementation would require more 
standardized inputs or predefined symbol sets, likely constraining the sketching behavior 
of the designers and altering the natural flow of the session. Plus, the visual content 
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produced would be less fluid and less accurate, limiting the emergence of the kind of rich, 
interactive ideation observed in this study. But in our case, those human agent’s 
interpretive skills were the phenomena we seek to gain insights in, as it currently exceeds 
the capabilities of AI. Observing expert designers and agents in a live task ensures that 
the insights are both ecologically valid and contextually relevant. The richness of the 
empirical material and the detailed articulation of actions, conditions, and 
interdependencies offer a satisfactory level of insight into how a functional understanding 
of sketches is formed. 

As the validity of the gained insights depends on the performance of the human 
agents, we assessed this performance in a side study [53]. It demonstrated that human 
agents successfully adhered to the required rate of stimuli production while maintaining 
highly project appropriate content. They showed a strong understanding of the designers’ 
intentions and behaviors. Evaluating the perceived usefulness and perturbation of the 
received stimuli revealed that all types of visuals were considered non-disruptive. 
Designers’ assessments of usefulness were more in link with the context and timing of 
the stimuli rather than the quality of the human agents’ production. Although some 
designers noted occasional delays, slight mismatches in the desired level of detail of the 
representation, or misunderstandings, they overwhelmingly viewed the tool positively, 
emphasizing the relevance of the timing and of the content of the visuals. One limitation 
to note is that agents did not retain access to earlier sketch iterations, relying instead on 
memory. This was an intentional protocol choice to mirror what was visible to the 
designer in real time, ensuring alignment with the evolving focus of the design. While 
this choice to mirror what was visible to the designer in real time ensured alignment with 
the evolving focus of the design, it diverges from how an AI system would typically 
operate. This limitation should be taken into account when extrapolating findings to the 
design of memory-enabled AI tools. 

Finally, although this study was conducted within an architectural design task, the 
interpretive challenges and agent-based learning mechanisms it identifies are not 
exclusive to that domain. Many early-stage engineering design problems similarly 
involve spatial ambiguity, abstract function-form sketching, exploratory reasoning, 
evolving intent and open-ended problem framing. The strategies and mechanisms 
constructed to interpret the sketches are transferable and relevant to other domains. In 
particular, the articulation of recognition actions observed here contributes a conceptual 
model of sketch recognition that is analytically transferable to mechanical engineering 
design, where similar challenges in interpreting freehand representations and 
understanding design intent are present. By studying how human agents interpret 
meaning in freehand sketches, we provide empirical grounding for sketch-based AI tools 
that are adaptable across complex design domains. 

 
6.2. Insights for future sketch-based tool 
 

While some of the boxes shown in the holistic model in Figure 19 can be easily 
replaced by currently existing techniques, others present real challenges. The first main 
challenge lies in the initial step of synthesizing the received lines. As we have seen, 
sketches can consist of numerous lines, some of which may carry implicit or explicit 
information, while others may be texture or unnecessary lines that obscure the drawing's 
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legibility. Additionally, integrating information from multiple parallel sketches (such as 
plans, cross-sections, and detailed sub-sketches) is also a challenge. After that, 
transitioning from synthetic lines to a topological geometric model is a technique that has 
already been mastered in many design domains [27-29], including architecture [37, 38]. 

Interpreting drawings by recognizing drawing codes and symbols is also a 
well-established practice [39, 50]. But the limits are reached when users add personal 
codes or do not use the pre-recorded codes. Given the various knowledge strategies 
highlighted by our study, both considering well-established architectural conventional 
symbols but also contextual inference and incremental interpretation, we would 
recommend a balance between the adaptability of the sketch recognition system and the 
efficiency of the standardization of user inputs. But keeping in mind that, while using 
design domain drawing code databases and pre-encoded context information for software 
agent development is easily done, the challenge is to utilize the designer's habits and 
intentions, and to predict the probability of certain design elements based on the project 
context or rules of good composition. Populating the databases for user knowledge, 
architectural knowledge, and design intentions in this holistic model will be a substantial 
task. But developing tools that can interpret naturalistic sketches, over tools that 
encourage or rely on standardized visual inputs to function, even if having designers 
adapt their sketching behavior to align with conventions might reduce the complexity 
required for sketch recognition, will preserve the creative freedom needed in the early 
design phases where loose sketches are tools for thought. 

Finally, despite being already possible to create a model for functional 
understanding of a drawing from simple sketches in design domains with explicit and 
objectifiable codification [44, 48], it remains very challenging for architectural sketches, 
which are inherently complex, incomplete, and contain implicit information. 
 

Based on the priorly presented results, we provide insights for overcoming these 
challenges and developing powerful sketch-based generative AI tools for complex design 
situations where current tools are insufficient.   

Firstly, the sketch recognition module should be integrated into the drawing 
medium instead of relying on frozen images or sketch extracts like in most of the tools 
we came across in our literature review [6, 22, 24-26, 28-29, 32-33]. This allows access 
to sketches under construction, providing more information such as the temporality of 
line appearance and process perception beyond what is currently visible. The tool should 
also have the ability to memorize and store features that have been seen, in addition to 
those currently visible at the time of the recognition request, a precious resource to our 
knowledge not yet exploited in current tools [22-33]. As we saw in section 5.2, this helps 
the line recognition and the building of a global understanding of the drawing, rather than 
a collection of snapshots of unrelated parts of the object. This is particularly important for 
sketches that develop over several drawings in plans, sections, and elevations.  

Secondly, the tool should combine both symbolic and connectionist logic. 
Symbolic logic uses predefined rules and explicit instructions to narrow down the field of 
possible interpretation [59]. On the other hand, connectionist logic relies on statistical 
recognition probabilities and the knowledge provided to solve the problem [59]. The 
resources used by human agents to understand the received drawing belong to both 
logics. Indeed, the recognition strategy involves deducing the meaning of features based 
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on shape associations, feature scale, color codes, architectural codes and the probability 
of expecting a particular compositional element (according to rules of good architectural 
composition principles), thus following symbolic logic. Another part of the recognition 
strategy involves learning the designer's habits and intentions to start recognizing his/her 
own drawing codes and the probability of expecting a particular element according to 
his/her recurrent design method and even architectural style, thus following connectionist 
logic. A combined approach could, for example, use symbolic rules to constrain 
interpretations—such as requiring an opening to connect two enclosed spaces—while a 
trained model learns that a specific designer typically tend to put double doors if the 
space is available and draw doors as open arcs without adjoining lines, or represents 
circulation with dashed arrows, even if these deviate from standard drafting conventions. 

In order to be able to generate appropriate inspirational images for the object 
being designed, the tool, in recognizing the sketch, must go as far as a fine level of 
identification of the functions and of the detailed characteristics of the various elements 
drawn. This has been shown by the need to build a functional mental model to 
complement the topological geometric model. 

Finally, we also drew insights from the feedback provided by designers during the 
semi-structured interviews, which further informed potential enhancements for future 
versions of the tool. They highlighted the tool’s non-locking functionality, which allowed 
for flexibility in design exploration, and noted the time-saving capabilities that resulted 
from the tool’s ability to present relevant stimuli in real-time. Designers also identified 
potential avenues for enhancement, suggesting that the stimuli be better aligned with the 
level of detail in the design at the time of receipt. Furthermore, they recommended that 
specifically commanded images be transmitted with greater expediency to better match 
the designers' fast-paced ideation process. Additionally, several designers expressed a 
desire for the visual feedback or stimuli produced by the tool to be directly viewable on 
their own drawing tablets, rather than on a separate screen, to support a more fluid and 
integrated workflow. 
 
6.3. Implications for early stage design 
 

As discussed in the introduction, we selected an architectural design task for our 
case study to ensure that the sketches produced would be sufficiently rich, layered, and 
open-ended to reflect the kinds of interpretive challenges that sketch-based tools must 
ultimately handle. While these sketches often follow conventional drawing structures, 
they also include many informal, personalized visual cues—such as variations in line 
thickness or compositional emphasis—that carry semantic meaning not explicitly 
encoded and reflect individual designer’s habits. As shown in Section 5.3, the interpretive 
strategies and procedures discovered are not domain-specific, suggesting that the insights 
gained from this study can inform advances in sketch recognition techniques more 
broadly, including in mechanical engineering contexts where early-stage ideation also 
involves interpreting ambiguous, evolving sketches. 

As we saw in the background section, the interest for sketch-based intelligent 
design tools is high, there remains a significant gap in their ability to be incorporated into 
complex design and engineering work. We now better understand which key function 
requirements and knowledge bases make the difference in the ability to understand 
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complex sketches. These requirements and knowledge bases needs are generalizable 
across design domains. The knowledge provided by our study also opens a new paradigm 
of sketch-recognition technique as so far sketch-based engineering tools were either 
recognizing parametric primitives like points, lines, circular arcs, etc. to deduce drawn 
shapes information, or treating sketches as images in CNNs recognition strategies, 
strategies that were reaching limits.  

Acquiring the ability to comprehend intricate and ambiguous ideation sketches is 
a pivotal aspect of developing novel sketch-based tools that are more closely aligned with 
the design process, without impeding the designer's creative freedom and constraining 
their drawing behaviors. By aligning with the naturalistic sketch techniques employed by 
designers, it becomes possible to facilitate ideation at pivotal moments of design under 
uncertainty, where the act of drawing is a primary means of design rather than a mere 
representation of the design. 
 
7. CONCLUSION 

 
In this work, a wizard of oz protocol for an architectural design task was set up, 

tasking 8 human agents with interpreting the live sketches of 17 designers and producing 
focus-appropriate content in response during 1h30, in order to surface future 
requirements for sketch-based generative AI systems that could be used in design 
practice. To answer our research questions, we have highlighted a three-step human 
recognition activity - synthesis, recognition and interpretation - that involves the 
mobilization of four knowledge resources - related to the project context, the design 
domain, the designer's habits and the designer's intentions - and is enabled by two key 
characteristics: visual memory and the dynamic nature of the sketches received in this 
experience. Studying this recognition activity highlighted the specific challenges of 
understanding complex design sketches and provided insights for designing AI tool 
workflows and overcoming the capability gap of current systems.  

Based on our results, we find that future sketch-based generative AI tools should 
incorporate: (1) integration in the dynamic construction of the sketch and continuous 
storage of features in memory; (2) synthesis of symbolic (ruled-based) and connectionist 
(probabilistic learning-based) logic to operate various recognition resources; and (3) 
extension beyond geometrical models to build a functional model of the object, in order 
to be able to generate interesting and accurate inspirational images. Taken together, these 
findings can be incorporated into the development of new approaches to recognize 
sketches at the fundamental level, and a perspective to recognize sketches that were 
previously too complex at the applied level. Finally, they inform the inclusion of new 
resources and software architecture within AI tools. 

As these results are obtained from a case study run with local professional 
designers, subsequent research could include other sketched design tasks to a larger 
sample of designers across countries and domains. The next stage of the project will be 
the development of a prototype of the proposed sketch-based instrumentation. 
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