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Recent developments in using Large Language Models (LLMs) to predict 

and align with neural representations of language can be applied to 

achieving a future vision of design tools that enable detection and 

reconstruction of designers’ mental representations of ideas. Prior work has 

largely explored this relationship during passive language tasks only, e.g., 

reading or listening. In this work, the relationship between brain activation 

data (functional imaging, fMRI) during appropriate and novel word 

association generation and LLM (Llama-2 7b) word representations is tested 

using Representational Similarity Analysis (RSA). Findings suggest that 

LLM word representations align with brain activity captured during novel 

word association, but not when forming appropriate associates. Association 

formation is one cognitive process central to design. By demonstrating that 

brain activity during this task can align with LLM word representations, 

insights from this work encourage further investigation into this relationship 

during more complex design ideation processes.   
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Introduction   

Recent advances showcasing the potential of Large Language Models 

(LLMs) to predict and align with neural representations of language present 

exciting opportunities for research at the intersection of design, 

computation, and cognition. Leveraging artificial intelligence (AI) 

approaches conventionally used to model and generate language, models of 

language in the human brain have been developed (e.g., [1–3]). While 

reasons underlying brain-LLM alignment are not fully understood [4], 

recent work supporting this relationship motivates the present study of 

brain-LLM alignment during language generation. Broadly, implications for 

demonstrating this relationship are wide reaching, such as to facilitate the 

decoding and reconstruction of language from mental representations alone 

(e.g., by [1]). However, testing the alignment between brain activity and 

LLMs has mostly been limited to tasks involving passive language reception 

(e.g., reading text [2] or listening to speech [1,3]). Our work explores this 

relationship during language generation through word association, a 

cognitive process engaged during design, especially when forming novel 

associations [5]. Applied to design, establishing the capabilities of LLMs to 

semantically model neural representations of language can lead to 

actualizing a future vision of design tools that effectively utilize brain-

machine interfaces. Brain-machine design tools that detect and decode 

designers’ ideas from their minds can enable seamless representation of 

ideas from the mind and opportunities to provide real-time aid for designers. 

In order to realize these brain-machine interactions, in this work, we 

initially assess whether LLMs produce brain-like responses to language 

during word generation. Thus, the first research question examined in this 

work (RQ1) is: Do semantic representations of words produced by LLMs 

align with neural representations of words during word generation? This 

research question is addressed through a word association task, conducted 

during functional magnetic resonance imaging (fMRI). In this task, subjects 

(N=35) were instructed to generate either appropriate or novel single word 

associates to single word stimuli. We assess the alignment between layer-

by-layer LLM activations of word prompts to brain responses collected 

while thinking of associations to the same words. The processes of obtaining 

and comparing neural and LLM word activations are detailed fully below. 

Comparing the two task conditions, we further assess whether differences 

in brain-LLM alignment exist when thinking of appropriate compared to 

novel associations of words. This difference is investigated in our second 

research question (RQ2): Do task goals differently impact brain-LLM 

alignment during word generation? As novel association generation is 

specifically involved in creative thinking, this comparison first contributes 
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to a fundamental understanding of neurocognitive processes underlying 

creativity. Through this comparison, we aim to reveal insight into how 

LLMs may be effectively utilized in design to ‘think’ creatively in response 

to a given design prompt. LLM word representations that match well to 

brain responses during novel word association may also be suitable for 

directly generating creative output. Implications for differences in brain-

LLM alignment during appropriate compared to novel word association are 

explored and discussed in this paper.  

Background  

The present work extends upon novel developments in the utilization of 

artificial intelligence (AI) and LLMs to model language representations by 

humans in the brain. Key findings from this emerging research area at the 

intersection of neuroscience and computation are introduced in this section. 

This work aims to leverage these techniques toward modeling brain-based 

representations of language during a word association task. Prior work 

demonstrating the role of association in design and neurocognitive processes 

underlying design are also reviewed in this section.  

Modeling neural representations of language with language models  

With the proliferation of use of artificial intelligence (AI) and neural 

networks in semantic modeling, significant advancement in encoding and 

decoding brain-based representations of language has been observed in 

recent work. The development of encoding models is a data-driven approach 

that has been used to model voxel-wise brain responses to language [6]. 

Related works effectively utilizing this approach are presented to motivate 

this work. Insights from a variety of studies across modalities of semantic 

stimuli, brain imaging techniques, and language models are introduced.  

One frequently used stimulus type administered to elicit language-related 

brain responses is audio recording (i.e., spoken natural speech). Encoding 

models built on word features extracted from frequency-based embeddings 

[3] or word2vec [7] have been shown to predict fMRI BOLD (functional 

magnetic resonance imaging blood-oxygen-level-dependent) responses in 

the brain, recorded while listening to natural speech. Défossez et al. reported 

similar findings when applying a pretrained speech module (wav2vec 2.0) 

to decode brain responses to speech recorded noninvasively using MEG 

(magneto-encephalography) and EEG (electro-encephalography) [8]. More 

recently, Tang et al. demonstrated how a generative neural network 

language model can be applied to reconstruct continuous language from 

fMRI activity during natural speech listening [1].  
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To predict fMRI and MEG responses recorded during sentence reading, 

Caucheteux et al. trained models with language transformers, and observed 

convergence between the deep learning algorithms and brain responses [2]. 

Toneva & Wehbe also used fMRI recordings while reading complex natural 

text to understand how transformer models (e.g., BERT) encode information 

relevant to language processing, additionally finding that middle model 

layers best encode longer sentences [9]. The success of word representations 

by LLMs to enable brain encoding and decoding motivates our exploration 

of LLMs in this study.  

These examples of prior work, briefly introduced here, have largely 

explored the relationship between language models and neural 

representations of language during reception, i.e., listening or reading tasks. 

Related work has also investigated how language models predict brain 

response during mental simulation of words [10] or semantic 

comprehension [11]. Our work investigates brain-LLM alignment during 

language generation, specifically when forming associations to words. 

Importantly, to study processes involved in creativity and design, it is 

essential to assess the effectiveness of these methods when applied to 

modeling brain activity during new generation and ideation.  

Applying Representational Similarity Analysis (RSA) to compare 

representations of language 

While encoding models provide an approach to use language models to 

directly predict voxel-wise brain responses to language, this work instead 

employs Representational Similarity Analysis (RSA) to initially investigate 

alignment between brain activity and LLMs during word generation. RSA 

is an analytical method developed to characterize activity patterns across 

voxels in the brain using representational dissimilarity matrices (RDMs) 

[12]. RDMs are matrices of pairwise comparisons (e.g., dissimilarities) of 

e.g., brain responses to stimuli, which can provide insight into how the brain 

represents different information.  

Applications of RSA also exist beyond the field of neuroscience, such as 

to compare representation of language by different LLMs [13,14]. Klabunde 

et al. conduct RSA to compare representational similarities across various 7 

billion (7b) parameter LLMs (i.e., LLMs with 7b model weights) [14], 

finding that they are not universal across models [13]. Relatedly, Kornblith 

et al. construct RDMs to compare structural similarities between deep neural 

networks [15]. In this study, RSA is applied to compare similarities between 

single words as represented in the brain and by an LLM. The brain response 

associated with each word reflects either appropriate or novel association 

generation with the given word and LLM responses are layer-by-layer 

activations of the given word. 
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Cognitive processes underlying creativity and design  

Exceeding the complexity of prior work using LLMs to model and predict 

brain activity during simple language tasks, we are furthermore interested 

in brain-LLM alignment during the design process. As an initial step, in the 

present study, insights from a word association task reveal not only how 

humans and LLMs represent semantic information, but additionally how 

this relationship varies when humans think of words with a common or 

creative framing. Association is considered essential to creative thinking 

[16] and forming novel associations has been shown to contribute to the 

design process [4]. Even performance on simple tasks such as single-word 

association demonstrates a relationship with individual creativity measures 

[17,18]. In a design task, Yin et al. found that high creativity individuals 

engaged in remote association processes and utilized more association 

processes than low creativity individuals [5]. Neuroimaging methods, such 

as EEG [19] or fMRI [20], have been used to identify neural differences 

during remote compared to common association in creativity tasks.  

While design tasks are distinct from creativity tasks, similarities have 

been observed at a neural level between brain activation during basic 

creativity tasks and during design studies [21,22]. Investigating ideation 

processes of product design engineers using fMRI, Hay et al. found 

alignment in brain activation patterns with reported findings from generic 

creative ideation tasks [21]. Goucher-Lambert et al. observed that when 

deriving design ideas with inspirational stimuli, brain activation patterns 

were consistent with neural correlates to creativity-relevant tasks, such as 

semantic processing, word representation, and word meaning/retrieval [19]. 

At a basic level, brain activity observed during creativity can also be 

reflected in design relevant tasks.   

In this paper, we test whether differences in brain activation patterns that 

emerge during appropriate vs. novel word association contribute to how 

successfully they match with LLM word representations. This relationship 

is explored by determining how brain-LLM alignment is impacted by the 

generation of appropriate compared to novel associates of words.   

Methods 

The main aim of this work is to assess the alignment between neural and 

LLM representations of words. To collect neural representations of words, 

an fMRI study was conducted in which subjects completed a word 

association task to generate appropriate and novel word associates to 

provided stimuli. LLM activations from Llama-2 7b for the same sets of 
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stimuli were produced for individual layers of the model to compare to these 

neural representations. Enabling this comparison, Representational 

Similarity Analysis (RSA) techniques are used, as described in this section.  

Word association task  

Participants 

A total of 35 young adults (students) participated in the study. Participants 

received cash payment for their involvement. All participants were right-

handed with normal or corrected-to-normal vision and reported no history 

of neurological disorder. One participant was excluded who failed to 

complete the task (24 females; mean age: 20; age range: 18–31). The study 

was approved by the Penn State Institutional Review Board. Informed 

consent was obtained prior to participation. 

Study procedure 

A simple single word-association task was conducted in this study, 

consisting of a generation and evaluation phase. Data from the evaluation 

phase was not analyzed in the present work; but full details are available 

(see [23]). In the generation phase, participants were instructed to either 

generate an appropriate or novel association to a given word stimulus (e.g., 

noun = ‘belt’, appropriate association = ‘pants’, novel association = ‘stars’). 

Participants were asked to generate associations that were concrete nouns. 

Post-task analyses in prior work revealed higher semantic distances between 

cue words and associated responses in the novel condition, ensuring that 

task instructions facilitated differences between the two conditions [23].         

Following a 5s pre-instruction fixation, the association instruction 

appeared and lasted 5s. After a 4–6s jittered fixation cross presentation, a 

noun from the stimulus list appeared on the screen for 1s. Participants were 

then given 5s to generate an association, which was immediately followed 

by a 3s window to orally provide their response. If a participant could not 

think of an association, they were instructed to say “none.” This process is 

summarized in Fig. 1 for a single block and trial.  

Task stimuli selection 

Participants completed the word association task in the fMRI scanner where 

they were presented with a total of 60 nouns during the generation phase (12 

trials per run; 5 runs total). Each run of the generation phase consisted of 

two blocks (six appropriate and six novel trials), listed in Table 1. 
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Fig. 1 Word association task and trial procedure in generation phase of study  

Table 1 Word stimuli presented during the word association task 

 Run number 

Association 

type 
1 2 3 4 5 

Novel 

coin 

hat 

statue 

alley 

subway 

sword 

rock 

plant 

palace 

branch 

bath 

plane 

seat 

match 

log 

church 

rocket 

pet 

purse 

leather 

ladder 

robot 

brass 

shell 

mail 

dock 

coat 

pocket 

screen 

hotel 

Appropriate 

bench 

train 

steam 

page 

sink 

fence 

belt 

tea 

net 

earth 

tray 

barn 

wheel 

drill 

carpet 

circus 

costume 

gym 

rain 

bar 

engine 

grass 

shadow 

glove 

bucket 

gum 

sea 

map 

pole 

drum 

The presentation of appropriate or novel stimuli first was counterbalanced 

across two groups and alternated between runs.  Stimuli were selected from 

a database of 1716 nouns that appeared in several publicly available 

databases of psycholinguistic norms and reduced using the six following 

criteria: word frequency, concreteness, imageability, valence, semantic 

diversity, and cue set size. This yielded a reduced list of 298 words, which 

was further reduced by manually removing all animate words (humans, 

animals, professions, body parts), resulting in 160 words. From these, 

random lists of 30 words were selected (1 list for the novel condition, 1 list 

for the appropriate condition), until there were no significant differences on 

any of the six word features (according to t-test analyses; see full analyses 

and psycholinguistic features of each stimulus list in [23]). 
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fMRI data analysis 

The fMRI data collected during the task was acquired and preprocessed 

following the steps outlined in this subsection. In the subsequent analyses 

performed, only fMRI data in the language-network region of interest [24] 

was utilized, visualized in Fig. 2.        

 
Fig. 2 Selected regions of interest from [24] are projected on a standard template 

image (MNI152). A total of 12 parcels are highlighted, including: in each 

hemisphere, three frontal parcels (inferior frontal gyrus [IFG], its orbital portion 

[IFGorb], and middle frontal gyrus [MFG]) and three temporal/parietal ones 

(anterior temporal [AntTemp], posterior temporal [PostTemp], and angular gyrus 

[AngG]).  

fMRI Data Acquisition: Structural and functional images were acquired 

using a Siemans 3 T scanner equipped with a 20-channel head coil. 

Structural images were acquired with a 2300ms TR, 2.28ms TE, 256 mm 

field of view (FOV), 192 axial slices, and 1 mm slice thickness. Echo-planar 

functional images were acquired using an interleaved acquisition, 2500ms 

TR, 35ms TE, 240mm FOV, 90◦ flip angle, 42 axial slices with 3mm slice 

thickness resulting in 3mm isotropic voxels. 

Anatomical Data Preprocessing: T1-weighted (T1w) images were 

corrected for intensity non-uniformity using N4BiasFieldCorrection (ANTs 

2.2.0), which then served as a reference throughout the workflow. Skull-

stripping was executed using the antsBrainExtraction.sh workflow (ANTs), 

with OASIS30ANTs as the target template. Brain tissue segmentation into 

cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was 

conducted on the skull-stripped T1w images utilizing fast (FSL 5.0.9). The 

spatial normalization to the MNI152NLin2009cAsym standard space was 

achieved through nonlinear registration of brain-extracted T1w reference 

and template using antsRegistration (ANTs 2.2.0). 
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Functional Data Preprocessing: Functional data preprocessing was 

applied to each of the 10 BOLD runs per subject. This involved generating 

a reference volume and its skull-stripped version using fMRIPrep's custom 

methodology. BOLD references were aligned to the T1w references using 

bbregister (FreeSurfer), configured for nine degrees of freedom to address 

residual distortions. Head-motion parameters were estimated using mcflirt 

(FSL 5.0.9), followed by slice-time correction of BOLD runs with 3dTshift 

(AFNI 20160207). The BOLD time-series were then resampled to native 

space and standard space (MNI152NLin2009cAsym). 

Language model: Llama-2 7b 

The LLM used in this study to obtain model-based representations of task 

stimuli is the open-source, Llama-2 7b-parameter generative text model 

[25].  The Llama family of models uses a decoder-only transformer 

architecture (similar to that used in the GPT family) and, relative to open-

source models of comparable size, achieves state-of-the-art language 

understanding and reasoning performance. A key feature of Llama-2 is its 

emphasis on maintaining a low inference over training budget. In other 

words, Llama is developed to be fast at inference instead of training, 

resulting in a smaller model that is trained longer. 4096-dimensional word 

representations are obtained from Llama-2 for each of 32 hidden layers of 

the model. These activations are then transformed into a representation that 

can be quantitatively compared to neural representations using 

representational similarity analysis, as next described. 

RSA analysis 

Representational similarity analysis (RSA) is the analytical technique used 

in this work to compare how similar activity in the brain is to activity in 

individual layers of the Llama-2 model. RSA operates by exposing two 

systems (in this case, a human brain and an LLM) to the same set of 

conditions (word stimuli). Within each system, distances between 

representations associated with each pair of conditions are calculated to 

produce n x n representational dissimilarity matrices (RDMs) that represent 

the representational geometry of each system under the conditions assessed 

[12]. Each cell in an RDM reflects the difference in how a pair of 

conditions/stimuli are represented.  

The overall process for developing RDMs from brain and LLM data is 

summarized in Fig. 3. The RDMs of the two systems can then be compared 

to assess the degree of representational alignment between them. In the 

present work, correlation distance (i.e., 1 - correlation) is used to construct 

RDMs for both the brain and LLM (Fig. 3c-d)—the former based on 
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voxelwise fMRI activity patterns (Fig. 3a) and the latter based on activity 

patterns at each hidden layer (i.e., one RDM per layer; Fig. 3b). Pearson 

correlation, r, then compares the fMRI RDM to the LLM RDMs (Fig. 3e). 

The processes for developing RDMs from the collected fMRI data and from 

LLM word representations are next outlined. 

 
Fig. 3 Process of developing fMRI and LLM RDMs. For each stimulus pair a) 

subject-level brain response and b) layer-level LLM activations are obtained. 

Dissimilarities between vectorized c) fMRI and d) LLM-based multidimensional 

activations for word are computed using 1 – correlation (1-r). e) fMRI and LLM 

RDMs are constructed from pairwise dissimilarities and compared for each subject-

LLM layer with Pearson correlation, r. 

fMRI RDM construction  

For each subject, two separate 30x30 RDMs were constructed to represent 

dissimilarities in brain activity patterns between words: the first, for stimuli 

in the appropriate condition, and the second for words in the novel condition. 

The preprocessed fMRI time-series data from the targeted language-

network region of interest [24] was first used to model the hemodynamic 

response to stimuli for each participant.  A General Linear Model (GLM) 
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was constructed via the PyMVPA library in Python using stimulus/word and 

run number as conditions in the model [26]. The model was fit to brain 

activation data across the entire 5s generation phase (1s during stimulus 

presentation and 4s during word generation). fMRI RDMs were then 

constructed by computing pairwise dissimilarities (1-r) between fMRI 

activation patterns modeled by the GLM. 

LLM RDM construction  

Beyond applications in neuroscience, RSA has also been used in prior work 

to compare language representations of different LLMs [13,15]. In the 

present work, each word was tokenized and passed as an input to the model; 

the 4096-dimensional activations corresponding to each word were then 

extracted from each of Llama-2’s hidden layers. To generate LLM RDMs, 

pairwise dissimilarities (1-r) between the model activations for each word 

were computed using the rsatoolbox library in Python 

(https://rsatoolbox.readthedocs.io); this was done for each layer in Llama-2. 

Thus, each cell in the LLM RDMs represents the dissimilarity in the model’s 

output for each pair of words. For each of Llama-2’s 32 layers, 30x30 RDMs 

were produced for both stimuli in the appropriate and novel conditions.       

Results and Discussion 

As introduced in the previous section, RSA is used in this work to compare 

brain and LLM-based word representations. To compare the fMRI and LLM 

RDMs, Pearson correlations are computed between vectorized upper 

triangles of the constructed RDMs (symmetric around the diagonal). 

Addressing RQ1, we determine whether there is alignment between brain 

and LLM-based word representations by computing average fMRI-LLM 

RDM correlations across participants at each layer, for both task conditions 

(appropriate and novel word generation). Secondly, to address RQ2, fMRI-

LLM RDM alignment between brain and model responses to words 

presented during appropriate and novel word generation are compared.   

Assessing brain-LLM alignment across participants and LLM layers 

The first research aim of this study is to understand whether there is 

alignment between brain and LLM-based word representations. In Fig. 4, 

the relationships between fMRI and LLM-based RDMs are illustrated across 

32 layers of Llama-2 7b. Each bar in Fig. 4 visualizes the average correlation 

between participants’ fMRI RDMs and the LLM RDM constructed to 

https://rsatoolbox.readthedocs.io/
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represent dissimilarities between stimuli in each condition by the specified 

LLM layer. Positive alignment between RDMs is tested and demonstrated 

by greater than zero average correlation means across participants. Layers 

for which the average fMRI-LLM RDM correlations are greater than zero 

(based on one-tailed one-sample t-tests) include layers 3-4, 7-12, 14, 17-18, 

23-26 for novel condition RDMs, also indicated in Fig. 4 (e.g., average rnovel 

= 0.02, t(33)=-2.52, p<0.01 at layer 9). Effect sizes at this scale are expected 

in fMRI analyses and observed in related works (e.g.,[2]).  

 

Fig. 4 Average fMRI-LLM RDM correlations between individual participants’ 

fMRI RDMs and RMDs for each LLM layer. Results for one-sample t-tests against 

zero (one-tailed, average > 0) shown for each average; * = p<0.05, ** = p<0.01.  
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 Contrary to observations by Huth et al. [27], asymptotic brain-LLM 

alignment in later layers of the LLM was not specifically observed in this 

analysis. Notably, across all layers of the model, average fMRI-LLM RDM 

correlations for stimuli in the appropriate word generation condition are 

consistently below zero. The opposite relationship is observed for fMRI-

LLM RDM alignment representing stimuli in the novel word generation 

condition of the task (above zero correlations). These differences are 

directly assessed and discussed in the following subsection.   

Comparing brain-LLM alignment between task conditions 

Task condition differences observed in fMRI-LLM RDM correlations 

As shown in Fig. 4, fMRI-LLM RDM alignment appears to differ for fMRI 

RDMs constructed based on neural representations during novel compared 

to appropriate word generation. This difference is found to be statistically 

significant based on paired two-sided two-sample t-tests comparing fMRI-

LLM RDM correlations for both conditions at layers 1-12, 14, 16-27, 32 

(e.g., average rnovel =0.02, average rappropriate=-0.02, t66=-3.64, p<0.001 at 

layer 8). The difference in alignment of fMRI-LLM RDMs between novel 

and appropriate task conditions is thus observed for activations across most 

layers of the LLM. Since distinct stimulus sets were used in each task 

condition, to ensure that these differences in alignment are related to brain 

activity in each task condition and not stimulus features, additional analyses 

are performed.  

Task condition differences observed in word representations in the brain                  

Previously, two condition-specific 30x30 fMRI RDMs were developed 

(following the procedure outlined in Fig. 3a, c). An additional 60x60 fMRI 

RDM is constructed to assess dissimilarities in brain activity patterns during 

appropriate vs. novel word generation, as displayed in Fig. 5.  

This RDM in Fig. 5 includes dissimilarities in brain activity between 

forming an appropriate vs. a novel word association, previously missing in 

the 30x30 fMRI RDMs. By visual inspection of Fig. 5, dissimilarities 

between brain activation patterns when generating different types of word 

associations (appropriate vs. novel) appear higher than when generating the 

same type of word association. This relationship suggests that higher fMRI-

LLM RDM alignment during novel word association is related to how words 

are distinctly represented in the brain during novel vs. appropriate word 

association (and not related to the stimulus sets seen in the task). 
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Fig. 5 RDM (60x60) with pairwise dissimilarities in brain activation patterns of 

stimuli seen during both appropriate and novel word generation  

Average dissimilarities in brain response when performing the same vs. 

different types of word association are shown in Fig. 6. Using two-tailed 

two-sample t-tests, the average pairwise dissimilarities in brain response 

related to appropriate-appropriate, novel- novel, and appropriate-novel word 

associations are compared.  

If average dissimilarities between neural word representations of 

appropriate-appropriate stimulus pairs and novel-novel stimulus pairs differ, 

this would indicate a potential effect other than task condition on the 

previous findings. Instead, we find that when generating the same type of 

association for two words (i.e., appropriate-appropriate vs. novel-novel), no 

statistically significant difference in word dissimilarities is observed 

(t29578=0.21, p=0.84), whether the associations made are appropriate or 

novel. However, there are differences observed when comparing 

dissimilarities between word generation of the same and different types 

(t29578=-19.6, p<0.0001, t29578=-19.1, p<0.0001). In other words, the way the 

brain represents semantic information appears to differ during novel 

association compared to appropriate association. This analysis supports our 

initial result that higher fMRI-LLM RDM alignment for stimuli seen during 

novel word association is related to differences in brain activity and not 

stimuli or LLM representations specific to the task condition. 
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Fig. 6 Average dissimilarities in brain activation patterns during word generation 

across different task conditions. Results for paired two-sample t-tests (two-tailed) 

shown for each average; * = p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001.  

Based on these findings, we suggest that for LLMs to align with 

representations of brain activity during active word generation, it may be 

necessary to engage in deep thinking processes, likely more prominent 

during novel than appropriate word association. This interpretation is 

supported by prior work by Soto et al. who observed higher accuracy of 

LLM-based models to decode brain activity during deep processing (mental 

simulation of an item’s features) than shallow processing (reading and 

repeating name of item) [10]. 

Implications for design  

In this study, the relationship between language representations by LLMs 

and in the brain during language generation was explored. We observed 

positive alignment in word representations by LLMs and brain activity 

during language generation, specifically during novel word association. The 
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alignment of LLMs with human neural representations of semantic 

information observed during language generation reveals potential for 

eventual uses of AI and language models toward decoding mental 

representations. This work contributes encouraging findings towards this 

vision, and other insights into and applications for design.  

Our results support prior work establishing neural correlates of 

association in design [19] by establishing differences in brain activity 

patterns representing semantic information during appropriate vs. novel 

word association. Furthermore, we show that there is higher brain-LLM 

alignment when generating novel word associates. Demonstrating that 

LLMs and brain representations can similarly represent semantic 

information during language generation provides positive insight for 

applying LLMs to decoding designers’ new ideas. Enabling the direct 

decoding of newly generated words from designers’ mental representations 

can help remove barriers in traditional design contexts that may limit 

expression and representation of design ideas. Real-time brain decoding also 

has wide implications for novel brain-machine interfaces for design. The 

impact of neurocognitive feedback on design ideation output (e.g., cognitive 

activation feedback [28]) may be enhanced and improved with added 

context about what designers are thinking. Prior work has shown how 

providing designers with inspirational stimuli selected at varied analogical 

distances from their idea in real time can affect different design outcomes 

[29]. Applied in a brain-machine interface, a designer could be provided 

with inspirational aid based on their design idea as it emerges, supporting 

their continued ideation and design process.  

In creativity and design research, some applications of LLMs thus far 

have been to generate design concepts [30] or score creativity of human-

generated responses using semantic distance measures [31]. Different from 

these applications, our work proposes that LLMs can directly decode 

human-generated design concepts based on their mental representations 

alone. The findings observed in this study provide encouraging directions 

for further exploration into modeling brain responses with LLMs toward 

new design tools and applications.  

Limitations and future work 

In this paper, RSA is used to compare RDMs constructed to illustrate word 

representations by LLMs with word representations in the brain during 

active association generation. Potential limitations of this study and 

opportunities for future work are discussed to advance these findings. 
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This study explores differences in brain-LLM alignment during 

appropriate and novel word association generation across multiple levels of 

granularity, with the most granular related to group averages across 

participants. As this relationship may vary across individuals, future work 

can further explore how individual differences may impact these findings.  

A full comparison of RDMs consisting of dissimilarities between all 60 

words in the study was not performed, due to the difference in stimuli used 

in each condition of the task. Although efforts were made to match 

psycholinguistic features of words in the appropriate and novel stimulus sets 

(reported in [23]), stimulus features may contribute to observed differences 

between brain activity in these conditions. While a limitation, our findings 

suggest that the differences observed are related to the task condition 

engaged, rather than to features of words in the stimulus sets presented.  

The neural representations of words studied in this paper were obtained 

in an MRI scanner, where participants were lying supine viewing the 

projected text. The use of fMRI in design research must consider trade-offs 

between fMRI constraints (e.g., noisy, use in an enclosed space) and 

ecological validity [32]. In this work, a simple task was engaged to initially 

examine brain activity during language generation. For continued study on 

brain-LLM alignment in design, brain activity during design concept 

generation may be desired, for which fMRI usage may be limited. Future 

work should explore adapting experimental paradigms for design research 

to be suitable for study using fMRI, or ways of utilizing brain signal 

obtained from more portable devices e.g., EEG or fNIRS (functional Near 

Infrared Spectroscopy) towards brain decoding (e.g., [33]). 

Related to the LLM word representations obtained, in this initial 

investigation, we examined decontextualized LLM word representations 

only. However, humans completed the task under performance-guiding 

context (instructions) that may have altered neural responses relevant to 

generating associates. Thus, an important next step for this research is to 

investigate whether and how the provision of task context to the LLM affects 

alignment with human brain data. Related to model selection, although the 

7b model (the smallest Llama-2 model) has been shown to be performant 

relative to other models of comparable size on NLP benchmarks, the 70b 

version performs approximately twice as good [25]. Antonello et al. for 

example, show that bigger models tend to better match human brain data 

during a language reception task [27]. As such, examining the influence of 

model size on brain-machine alignment is another promising avenue for 

future work. As Klabunde et al. observed [13], representational similarity is 

not universal across different models. This work therefore invites further 

investigation of the alignment between different language models and brain 

activity. 
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Pearson correlation is used as the main metric of correlation and 

dissimilarity in this study. Other measures of computing similarity when 

constructing and comparing RDMs are available, and different approaches 

to assessing alignment can also be explored. Decoded LLM activations at 

intermediate states, for example, can be compared with participants’ 

generated word associations. This analysis can contribute to providing 

insight to results specific to alignment with individual model layers.  

Finally, beyond language, computational models that represent semantic 

and visual features of images (e.g., ResNet50) have been effectively 

leveraged to decode brain response when viewing images [34]. Investigating 

this relationship with the future aim of decoding mental representations of 

new ideas is another exciting direction for future exploration. 

Conclusion 

An overarching objective of this work is to investigate whether LLMs can 

be suitable candidates for applications in decoding mental representations 

of generated ideas or design concepts. Prior work has thus far not widely 

tested the relationship between language representation by LLMs and brain 

activity in humans during language generation tasks. Our findings suggest 

that not only do neural activations during word generation and LLM-based 

representations of words align, but this relationship is demonstrated during 

the formation of novel compared to appropriate word associations 

specifically. While somewhat unintuitive, since LLMs may be expected to 

‘think’ of words in terms of natural, appropriate, or expected associations, 

this relationship suggests that the deeper mental processing required to form 

novel word associates promotes improved alignment. This finding 

encourages further investigation into brain-LLM alignment during complex 

tasks including, beyond generating simple novel word associations, other 

cognitive processes involved in creativity and design.    
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